cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020749 Pisot sequence T(5,8), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

5, 8, 12, 18, 27, 40, 59, 87, 128, 188, 276, 405, 594, 871, 1277, 1872, 2744, 4022, 5895, 8640, 12663, 18559, 27200, 39864, 58424, 85625, 125490, 183915, 269541, 395032, 578948, 848490, 1243523, 1822472, 2670963, 3914487, 5736960, 8407924, 12322412, 18059373
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A020745.
See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Txy:=[5,8]; [n le 2 select Txy[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 05 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 5, a[1] == 8, a[n] == Floor[a[n - 1]^2/a[n - 2] ]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 05 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 5, 8) \\ Colin Barker, Jul 29 2016

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016