A020832 Decimal expansion of 1/sqrt(75).
1, 1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5
Offset: 0
Examples
0.1154700538379251529...
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 62.
- Yining Hu, Patterns in numbers and infinite sums and products, arXiv:1506.00151 [math.NT], 2015.
- Samuel G. Moreno and Esther M. García, New Infinite Products of Cosines and Viète-Like Formulae, Mathematics Magazine, vol. 86, no. 1, 2013, pp. 15-25. See formula for 2/sqrt(3) page 15.
- Index entries for algebraic numbers, degree 2
Programs
-
Mathematica
RealDigits[1/Sqrt[75], 10, 100][[1]] (* Alonso del Arte, Apr 30 2012 *)
-
PARI
75^-.5 \\ Charles R Greathouse IV, Mar 31 2016
Formula
(csc(Pi/3))/10, where csc is the cosecant function. - Alonso del Arte, Apr 30 2012
Product_{n>=1} ((3*n+1)/(3*n+2))^((-1)^n), with offset 1. (see Hu link). - Michel Marcus, Jun 02 2015
From Amiram Eldar, Aug 02 2020: (Start)
2/sqrt(3) = Sum_{k>=0} binomial(2*k,k)/16^k.
2/sqrt(3) = 1 + Sum_{k>=1} (2*k-1)!!/((2*k)!! * 2^(2*k)). (End)
2/sqrt(3) = Product_{k>=1} (1 - (-1)^k/A047235(k)). - Amiram Eldar, Nov 22 2024
Comments