A020894 Nonnegative numbers that are sums of two nonzero cubes.
0, 2, 7, 9, 16, 19, 26, 28, 35, 37, 54, 56, 61, 63, 65, 72, 91, 98, 117, 124, 126, 127, 128, 133, 152, 169, 189, 208, 215, 217, 218, 224, 243, 250, 271, 279, 280, 296, 316, 331, 335, 341, 342, 344, 351, 370, 386, 387, 397, 407, 432, 448, 468, 469
Offset: 1
Keywords
Examples
From _Michael B. Porter_, Oct 16 2009: (Start) 7 is in the sequence because 2^3 + (-1)^3 = 7 8 is not in the sequence because the only solutions to x^3 + y^3 = 8 have either x=0 or y=0. (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [broken link]
- Steven R. Finch, On a Generalized Fermat-Wiles Equation [From the Wayback Machine]
Crossrefs
Cf. A045980 [From Michael B. Porter, Oct 16 2009]
Programs
-
Mathematica
Reap[For[n = 0, n < 500, n++, fi = FindInstance[x > 0 && y != 0 && n == x^3 + y^3, {x, y}, Integers, 1]; If[fi =!= {}, Print[n, " = ", Hold[x^3 + y^3] /. fi[[1]]]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 05 2016 *)
-
PARI
isA020894(n) = {r=0;x=1.0/2+sqrt(12*n-3.0)/6;for(i=1,floor(x),if(ispower(n-i^3,3) & (n != i^3),r++));r>0}; \\ Michael B. Porter, Oct 16 2009
-
PARI
T=thueinit('z^3+1); is(n)=n==0 || #select(v->v[1] && v[2], thue(T, n))>0 \\ Charles R Greathouse IV, Nov 29 2014
Extensions
Definition and offset edited by N. J. A. Sloane, Dec 01 2009
Comments