A020899 Numbers k with an odd number of terms in their Zeckendorf representation (write k as a sum of non-consecutive distinct Fibonacci numbers).
1, 2, 3, 5, 8, 12, 13, 17, 19, 20, 21, 25, 27, 28, 30, 31, 32, 34, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 88, 89, 93, 95, 96, 98, 99, 100, 103, 104, 105, 107, 111, 112, 113, 115, 118, 122, 124, 125
Offset: 1
Keywords
References
- C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin 29 (1952), 190-195.
- Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179-182.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. E. Daykin, Representation of natural numbers as sums of generalized Fibonacci numbers, J. London Math. Soc. 35 (1960), 143-160.
Programs
-
Haskell
a020899 n = a020899_list !! (n-1) a020899_list = filter (odd . a007895) [1..] -- Reinhard Zumkeller, Mar 10 2013
-
Mathematica
Flatten @ Position[Mod[DigitCount[Select[Range[0, 1000], BitAnd[#, 2 #] == 0 &], 2, 1], 2], 1] - 1 (* Amiram Eldar, Feb 05 2023 *)
Formula
A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013
Extensions
Offset corrected by Reinhard Zumkeller, Mar 10 2013
Comments