cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020921 Triangle read by rows: T(m,n) = number of solutions to 1 <= a(1) < a(2) < ... < a(m) <= n, where gcd( a(1), a(2), ..., a(m), n) = 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 3, 1, 0, 2, 5, 4, 1, 0, 4, 10, 10, 5, 1, 0, 2, 11, 19, 15, 6, 1, 0, 6, 21, 35, 35, 21, 7, 1, 0, 4, 22, 52, 69, 56, 28, 8, 1, 0, 6, 33, 83, 126, 126, 84, 36, 9, 1, 0, 4, 34, 110, 205, 251, 210, 120, 45, 10, 1, 0, 10, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Michael Somos, Nov 17 2002

Keywords

Examples

			From _R. J. Mathar_, Feb 12 2007: (Start)
Triangle begins
  1
  1 1
  0 1  1
  0 2  3   1
  0 2  5   4   1
  0 4 10  10   5   1
  0 2 11  19  15   6   1
  0 6 21  35  35  21   7   1
  0 4 22  52  69  56  28   8  1
  0 6 33  83 126 126  84  36  9  1
  0 4 34 110 205 251 210 120 45 10 1
The inverse of the triangle is
   1
  -1    1
   1   -1    1
  -1    1   -3    1
   1   -1    7   -4    1
  -1    1  -15   10   -5    1
   1   -1   31  -19   15   -6    1
  -1    1  -63   28  -35   21   -7    1
   1   -1  127  -28   71  -56   28   -8    1
  -1    1 -255    1 -135  126  -84   36   -9    1
   1   -1  511   80  255 -251  210 -120   45  -10    1
with row sums 1,0,1,-2,4,-9,22,-55,135,-319,721,...(cf. A038200).
(End)
		

Crossrefs

(Left-hand) columns include A000010, A102309. Row sums are essentially A027375.
Cf. A327029.

Programs

  • Maple
    A020921 := proc(n,k) option remember ; local divs ; if n <= 0 then 1 ; elif k > n then 0 ; else divs := numtheory[divisors](n) ; add(numtheory[mobius](op(i,divs))*binomial(n/op(i,divs),k),i=1..nops(divs)) ; fi ; end: nmax := 10 ; for row from 0 to nmax do for col from 0 to row do printf("%d,",A020921(row,col)) ; od ; od ; # R. J. Mathar, Feb 12 2007
  • Mathematica
    nmax = 11; t[n_, k_] := Total[ MoebiusMu[#]*Binomial[n/#, k] & /@ Divisors[n]]; t[0, 0] = 1; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after PARI *)
  • PARI
    {T(n, k) = if( n<=0, k==0 && n==0, sumdiv(n, d, moebius(d) * binomial(n/d, k)))}
    
  • Sage
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(moebius, binomial, 13) # Peter Luschny, Aug 24 2019