cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A284061 Triangle read by rows: T(n,k) = pi(prime(k) * prime(n+1)).

Original entry on oeis.org

3, 4, 6, 6, 8, 11, 8, 11, 16, 21, 9, 12, 18, 24, 34, 11, 15, 23, 30, 42, 47, 12, 16, 24, 32, 46, 53, 66, 14, 19, 30, 37, 54, 62, 77, 84, 16, 23, 34, 46, 66, 74, 94, 101, 121, 18, 24, 36, 47, 68, 79, 99, 107, 127, 154, 21, 29, 42, 55, 79, 92, 114, 126, 146, 180
Offset: 1

Views

Author

Michael De Vlieger, Mar 19 2017

Keywords

Comments

Prime(T(n,k)) is the largest prime q such that q * p_n# / prime(k) < p_(n+1)#, with primorial p_n# = A002110(n).
T(n,1) = A020900(n+1), T(n,2) = A020901(n+1), T(n,3) = A020935(n+1), T(n,4) = A020937(n+1).

Examples

			a(5) = T(2,2) = 8 since the largest prime q <= prime(2) prime(3+1) = 3*7 = 21 is 19, the 8th prime.
Rows 1 <= n <= 12 of triangle T(n,k):
   3
   4    6
   6    8   11
   8   11   16   21
   9   12   18   24   34
  11   15   23   30   42   47
  12   16   24   32   46   53    66
  14   19   30   37   54   62    77    84
  16   23   34   46   66   74    94   101   121
  18   24   36   47   68   79    99   107   127   154
  21   29   42   55   79   92   114   126   146   180   189
  22   30   46   61   87   99   125   137   160   195   205   240
Values of m = q * p_n#/prime(k) < p_(n+1)# with q = prime(T(n,k)):
                                    prime(k)
                      2       3       5       7      11      13
           6  |       5
          30  |      21      26
p_(n+1)# 210  |     195     190     186
        2310  |    1995    2170    2226    2190
       30030  |   26565   28490   28182   29370   29190
      510510  |  465465  470470  498498  484770  494130  487410
All terms m of row n have omega(m) = A001221(m) = n.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimePi[Prime[k] Prime[n + 1]], {n, 11}, {k, n}] // Flatten
  • PARI
    for(n=1, 12, for(k=1, n, print1(primepi(prime(k) * prime(n + 1)),", ");); print();); \\ Indranil Ghosh, Mar 19 2017
    
  • Python
    from sympy import prime, primepi
    for n in range(1, 13):
        print([primepi(prime(k) * prime(n + 1)) for k in range(1, n+1)])
    # Indranil Ghosh, Mar 19 2017
Showing 1-1 of 1 results.