A284061 Triangle read by rows: T(n,k) = pi(prime(k) * prime(n+1)).
3, 4, 6, 6, 8, 11, 8, 11, 16, 21, 9, 12, 18, 24, 34, 11, 15, 23, 30, 42, 47, 12, 16, 24, 32, 46, 53, 66, 14, 19, 30, 37, 54, 62, 77, 84, 16, 23, 34, 46, 66, 74, 94, 101, 121, 18, 24, 36, 47, 68, 79, 99, 107, 127, 154, 21, 29, 42, 55, 79, 92, 114, 126, 146, 180
Offset: 1
Examples
a(5) = T(2,2) = 8 since the largest prime q <= prime(2) prime(3+1) = 3*7 = 21 is 19, the 8th prime. Rows 1 <= n <= 12 of triangle T(n,k): 3 4 6 6 8 11 8 11 16 21 9 12 18 24 34 11 15 23 30 42 47 12 16 24 32 46 53 66 14 19 30 37 54 62 77 84 16 23 34 46 66 74 94 101 121 18 24 36 47 68 79 99 107 127 154 21 29 42 55 79 92 114 126 146 180 189 22 30 46 61 87 99 125 137 160 195 205 240 Values of m = q * p_n#/prime(k) < p_(n+1)# with q = prime(T(n,k)): prime(k) 2 3 5 7 11 13 6 | 5 30 | 21 26 p_(n+1)# 210 | 195 190 186 2310 | 1995 2170 2226 2190 30030 | 26565 28490 28182 29370 29190 510510 | 465465 470470 498498 484770 494130 487410 All terms m of row n have omega(m) = A001221(m) = n.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
Programs
-
Mathematica
Table[PrimePi[Prime[k] Prime[n + 1]], {n, 11}, {k, n}] // Flatten
-
PARI
for(n=1, 12, for(k=1, n, print1(primepi(prime(k) * prime(n + 1)),", ");); print();); \\ Indranil Ghosh, Mar 19 2017
-
Python
from sympy import prime, primepi for n in range(1, 13): print([primepi(prime(k) * prime(n + 1)) for k in range(1, n+1)]) # Indranil Ghosh, Mar 19 2017
Comments