A020942 First column of 3rd-order Zeckendorf array A136189.
1, 5, 7, 10, 14, 18, 20, 24, 26, 29, 33, 35, 38, 42, 46, 48, 51, 55, 59, 61, 65, 67, 70, 74, 78, 80, 84, 86, 89, 93, 95, 98, 102, 106, 108, 112, 114, 117, 121, 123, 126, 130, 134, 136, 139, 143, 147, 149, 153, 155, 158, 162, 164, 167, 171, 175, 177, 180, 184
Offset: 1
Examples
1=1; 5=4+1; 7=6+1; 10=9+1; etc.
Links
- A.H.M. Smeets, Table of n, a(n) for n = 1..20000
- Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012. - _N. J. A. Sloane_, Jun 10 2012
- Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (1995) 3-8.
- Jeffrey Shallit, The Narayana Morphism and Related Words, arXiv:2503.01026 [math.CO], 2025.
Crossrefs
Formula
Any number n has unique representation as a sum of terms from {1, 2, 3, 4, 6, 9, 13, 19, ...} (cf. A000930) such that no two terms are adjacent or pen-adjacent; e.g., 7=6+1. Sequence gives all n where that representation involves 1.
Conjecture: a(n) = A202342(n) + n. - Sean A. Irvine, May 05 2019 [proved in corrected form in Shallit (2025); it should read a(n) = A202342(n) + n-1]
a(n) = A136496(n) - 1. - Jeffrey Shallit, Mar 08 2025
Extensions
More terms from Naohiro Nomoto, Sep 17 2001
Comments