cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182801 Joint-rank array of the numbers j*r^(i-1), where r = golden ratio = (1+sqrt(5))/2, i>=1, j>=1, read by antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 9, 11, 8, 10, 13, 16, 19, 14, 12, 18, 23, 28, 32, 25, 15, 21, 31, 39, 48, 54, 42, 17, 26, 36, 52, 66, 81, 89, 71, 20, 29, 44, 61, 86, 110, 134, 147, 117, 22, 34, 49, 73, 102, 141, 181, 221, 240, 193, 24, 38, 57, 82
Offset: 1

Views

Author

Clark Kimberling, Dec 04 2010

Keywords

Comments

Joint-rank arrays are introduced here as follows.
Suppose that R={f(i,j)} is set of positive numbers, where i and j range through countable sets I and J, respectively, such that for every n, then number f(i,j) < n is finite. Let T(i,j) be the position of f(i,j) in the joint ranking of all the numbers in R. The joint-rank array of R is the array T whose i-th row is T(i,j).
For A182801, f(i,j)=j*r^(i-1), where r=(1+sqrt(5))/2 and I=J={1,2,3,...}.
(row 1)=A020959; (row 2)=A020960; (row 3)=A020961.
(col 1)=A020956; (col 2)=A020957; (col 3)=A020958.
Every positive integer occurs exactly once in A182801, so that as a sequence it is a permutation of the positive integers.

Examples

			Northwest corner:
1....3....5....7...10...12...
2....6....9...13...18...21...
4...11...16...23...31...36...
8...19...28...39...52...61...
		

Crossrefs

Programs

  • Mathematica
    r=GoldenRatio;
    f[i_,j_]:=Sum[Floor[j*r^(i-k)],{k,1,i+Log[r,j]}];
    TableForm[Table[f[i,j],{i,1,16},{j,1,16}]] (* A182801 *)

Formula

T(i,j)=Sum{floor(j*r^(i-k)): k>=1}.

A347065 Rectangular array (T(n,k)), by antidiagonals: T(n,k) = position of k in the ordering of {h/r^m, r = (1+sqrt(5))/2, h >= 1, 0 <= m <= n}.

Original entry on oeis.org

1, 3, 1, 4, 3, 1, 6, 5, 3, 1, 8, 7, 5, 3, 1, 9, 9, 7, 5, 3, 1, 11, 11, 10, 7, 5, 3, 1, 12, 13, 12, 10, 7, 5, 3, 1, 14, 15, 14, 12, 10, 7, 5, 3, 1, 16, 17, 16, 15, 12, 10, 7, 5, 3, 1, 17, 19, 19, 17, 15, 12, 10, 7, 5, 3, 1, 19, 21, 21, 20, 17, 15, 12, 10, 7
Offset: 1

Views

Author

Clark Kimberling, Aug 16 2021

Keywords

Examples

			Corner:
   1 3 4 6  8  9 11 12 14 16 17 19 21
   1 3 5 7  9 11 13 15 17 19 21 23 25
   1 3 5 7 10 12 14 16 19 21 23 25 28
   1 3 5 7 10 12 15 17 20 22 24 26 29
   1 3 5 7 10 12 15 17 20 22 24 27 30
   1 3 5 7 10 12 15 17 20 22 24 27 30
   1 3 5 7 10 12 15 17 20 22 24 27 30
		

Crossrefs

Cf. A000201 (row 1), A005408 (row 2), A190511 (row 3), A020959 (limiting row).

Programs

  • Mathematica
    z = 100; r = N[(1 + Sqrt[5])/2];
    s[m_] := Range[z] r^m; t[0] = s[0];
    t[n_] := Sort[Union[s[n], t[n - 1]]]
    row[n_] := Flatten[Table[Position[t[n], N[k]], {k, 1, z}]]
    TableForm[Table[row[n], {n, 1, 10}]] (* A347065, array *)
    w[n_, k_] := row[n][[k]];
    Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A347065, sequence *)

A252229 The number of numbers j*r^k in the interval [n,n+1), where r = (1 + sqrt(5))/2, the golden ratio, and j >=0, k >= 0.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 4, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 4, 3, 2, 2, 3, 2, 2, 3, 3, 4, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 3, 2, 2, 3, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 16 2014

Keywords

Comments

The least n for which a(n) = 4 is 29; the least n for which a(n) = 5 is 199.

Examples

			in [0,1):  0
in [1,2):  1, 1 + r
in [2,3):  2, 2 + r
in [3,4):  3, 1+2*r
in [4,5):  4, 1+3*r, 2 + r
		

Crossrefs

Programs

  • Mathematica
    z = 100; r = (1 + Sqrt[5])/2;
    s[n_, j_] := s[n, j] = Floor[Log[n/j]/Log[r]];
    a[n_] := a[n] = Sum[s[n + 1, j] - s[n, j], {j, 1, Floor[(n + 1)/r]}];
    t = Join[{1}, Table[1 + a[n], {n, 1, z}]] (* A252229 *)

Formula

a(n) = 1 + sum{s(n+1,j) - s(n,j), j=1..floor[(n+1)/r]}, where s(n,j) = floor[log(n/j)/log(r)], for n >= 1.
Showing 1-3 of 3 results.