A182869
Joint-rank array of prime powers: p(i)^j, i>=1, j>=1, read by antidiagonals.
Original entry on oeis.org
1, 3, 2, 6, 7, 4, 10, 15, 14, 5, 18, 32, 42, 23, 8, 27, 68, 136, 86, 41, 9, 44, 152, 482, 392, 244, 53, 11, 70, 359, 1880, 2001, 1773, 360, 91, 12, 117, 893, 7771, 11211
Offset: 1
First, arrange the prime powers in rows:
2....4....8....16....32...
3....9...27....81...243...
5...25..125...625..3125...
Then replace each prime power by its rank when they are all jointly ranked:
1....3....6....10.....18...
2....7...15....32.....68...
4...14...42...136....482...
5...23...86...392...2001...
8...41..244..1773..14901...
-
T[i_,j_]:=Sum[Floor[j*Log[Prime[i]]/Log[Prime[h]]],{h,1,PrimePi[Prime[i]^j]}];
TableForm[Table[T[i,j],{i,1,6},{j,1,6}]]
A182870
Joint-rank array of odd prime powers: p(i+1)^j, i>=1, j>=1, read by antidiagonals.
Original entry on oeis.org
1, 4, 2, 11, 10, 3, 26, 36, 18, 5, 61, 127, 78, 35, 6, 143, 471, 381, 234, 46, 7, 348, 1867, 1987, 1760, 349, 70, 8, 881, 7755, 11195, 14884, 3166, 686, 111, 9, 2279
Offset: 1
First, arrange the odd prime powers in rows:
3....9...27....81...
5...25..125...625...
7...49..343...2401...
Then replace each by its ranks when they are all jointly ranked:
1....4...11....26...
2...10...36...127...
3...18...78...381...
5...35..234..1760...
-
T[i_,j_]:=Sum[Floor[j*Log[Prime[i+1]]/Log[Prime[h]]],{h,2,PrimePi[Prime[i+1]^j]}]; TableForm[Table[T[i,j],{i,1,6},{j,1,6}]]
A182846
Joint-rank array of the numbers j*(i-1+r), where r=sqrt(2), i>=1, j>=1, by antidiagonals.
Original entry on oeis.org
1, 3, 2, 5, 7, 4, 9, 13, 11, 6, 12, 19, 21, 17, 8, 16, 26, 32, 30, 23, 10, 20, 35, 44, 46, 39, 29, 14, 24, 42, 55, 61, 59, 50, 36, 15, 28, 51, 67, 77, 81, 75, 62, 41, 18, 33, 60, 82, 95, 102, 100, 90, 72, 49, 22, 38, 69, 93, 113, 125, 128, 120, 106, 84, 56, 25, 43
Offset: 1
Northwest corner:
1....3....5....9...12...
2....7...13...19...26...
4...11...21...32...44...
6...17...30...46...61...
The numbers j*(i-1+sqrt(2)), approximately:
(for i=1) 1.41, 2.83, 4.24,...
(for i=2) 2.41, 4.83, 7.24,...
(for i=3) 3.41, 6.83, 10.24,...
Replacing each by its rank gives
1....3....5
2....7...13
4...ll...21
-
r=Sqrt[2];
f[i_,j_]:=Sum[Floor[j*(i-1+r)/(k-1+r)],{k,1,1+r+j(i-1+r)}];
TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (*A182846*)
A182849
Joint-rank array of the numbers j*(i-1+r), where r = golden ratio = (1+sqrt(5))/2, and i>=1, j>=1, by antidiagonals.
Original entry on oeis.org
1, 3, 2, 6, 7, 4, 9, 13, 11, 5, 14, 19, 21, 16, 8, 18, 27, 31, 30, 22, 10, 23, 36, 43, 45, 39, 28, 12, 26, 44, 56, 61, 57, 50, 34, 15, 32, 52, 68, 78, 79, 73, 60, 40, 17, 37, 63, 83, 94, 101, 98, 87, 70, 47, 20, 42, 72, 96, 113, 124, 126, 118, 104, 82, 54, 24, 48
Offset: 1
Northwest corner:
1....3....6....9...
2....7...13...19...
4...11...21...31...
5...16...30...45...
-
r=GoldenRatio;
f[i_,j_]:=Sum[Floor[j*(i-1+r)/(k-1+r)],{k,1,1+r+j(i-1+r)}];
TableForm[Table[f[i,j],{i,1,10},{j,1,10}]] (* A182849 *)
A167267
Interspersion of the signature sequence of (1+sqrt(5))/2.
Original entry on oeis.org
1, 3, 2, 7, 5, 4, 12, 10, 8, 6, 19, 16, 14, 11, 9, 28, 24, 21, 18, 15, 13, 38, 34, 30, 26, 23, 20, 17, 50, 45, 41, 36, 32, 29, 25, 22, 63, 58, 53, 48, 43, 39, 35, 31, 27, 78, 72, 67, 61, 56, 51, 46, 42, 37, 33
Offset: 1
Northwest corner:
1....3....7....12...19...28...38
2....5....10...16...24...34...45
4....8....14...21...30...41...53
6....11...18...26...36...48...61
9....15...23...32...43...56...70
13...20...29...39...51...65...80
- Clark Kimberling, "Fractal Sequences and Interspersions," Ars Combinatoria 45 (1997) 157-168.
-
v = GoldenRatio;
x = Table[Sum[Ceiling[i*v], {i, q}], {q, 0, end = 35}];
y = Table[Sum[Ceiling[i*1/v], {i, q}], {q, 0, end}];
tot[p_, q_] := x[[p + 1]] + p q + 1 + y[[q + 1]]
row[r_] := Table[tot[n, r], {n, 0, (end - 1)/v}]
Grid[Table[row[n], {n, 0, (end - 1)}]]
(* Norman Carey, Jul 03 2012 *)
-
\\ Produces the triangle when the array is read by antidiagonals
r = (1+sqrt(5))/2;
z = 100;
s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
u = v = vector(z + 1);
for(n=1, 101, (v[n] = s(n - 1)));
for(n=1, 101, (u[n] = p(n - 1)));
w(i, j) = v[i] + u[j] + (i - 1) * (j - 1) - 1;
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k), ", "); ); print(); ); };
tabl(10) \\ Indranil Ghosh, Mar 26 2017
-
# Produces the triangle when the array is read by antidiagonals
import math
from sympy import sqrt
r=(1 + sqrt(5))/2
def s(n): return 1 if n<1 else s(n - 1) + 1 + int(math.floor(n*r))
def p(n): return n + 1 + sum(int(math.floor((n - k)/r)) for k in range(n+1))
v=[s(n) for n in range(101)]
u=[p(n) for n in range(101)]
def w(i, j): return u[i - 1] + v[j - 1] + (i - 1) * (j - 1) - 1
for n in range(1, 11):
print([w(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A182847
Joint-rank array of the numbers j*(i-1+r), where r=sqrt(3), i>=1, j>=1, by diagonals.
Original entry on oeis.org
1, 3, 2, 6, 7, 4, 10, 13, 11, 5, 14, 20, 21, 16, 8, 18, 27, 32, 30, 22, 9, 24, 36, 42, 44, 38, 26, 12, 29, 46, 55, 61, 58, 49, 33, 15, 34, 54, 69, 77, 78, 72, 59, 40, 17, 39, 64, 84, 95, 100, 98, 87, 70, 47, 19, 45, 73, 97, 113, 123, 124, 117, 103, 80
Offset: 1
Northwest corner:
1....3....6...10...
2....7...13...20...
4...11...21...32...
5...16...30...44...
-
r=Sqrt[3];
f[i_,j_]:=Sum[Floor[j*(i-1+r)/(k-1+r)],{k,1,1+r+j(i-1+r)}];
TableForm[Table[f[i,j],{i,1,10},{j,1,10}]]
A182848
Joint-rank array of the numbers j*(i-1+r), where r=sqrt(5), i>=1, j>=1, by antidiagonals.
Original entry on oeis.org
1, 4, 2, 8, 7, 3, 12, 14, 11, 5, 17, 22, 21, 16, 6, 24, 30, 33, 29, 20, 9, 28, 40, 45, 44, 38, 26, 10, 35, 51, 59, 61, 57, 47, 32, 13, 41, 60, 73, 80, 77, 69, 56, 37, 15, 49, 71, 88, 97, 101, 94, 84, 66, 43, 18, 55, 82, 103, 115, 124, 123, 113, 99, 76, 50, 19, 64
Offset: 1
Northwest corner:
1....4....8...12...17...
2....7...14...22...30...
3...11...21...33...45...
5...16...29...44...61...
-
r=Sqrt[5];
f[i_,j_]:=Sum[Floor[j*(i-1+r)/(k-1+r)],{k,1,1+r+j(i-1+r)}];
TableForm[Table[f[i,j],{i,1,10},{j,1,10}]]
A182871
Joint-rank array of the numbers p^j, where p is a prime congruent to 3 mod 4 and j>=1, read by antidiagonals.
Original entry on oeis.org
1, 3, 2, 7, 11, 4, 16, 27, 20, 5, 26, 36, 32, 28, 6, 30, 49, 47, 42, 29, 8, 34, 59, 61, 60, 46, 31, 9, 41, 70, 75, 78, 64, 55, 33, 10, 52, 85, 89, 96, 86, 71, 57, 35, 12, 56, 94, 103, 114, 102, 92, 80, 58, 37, 13, 62, 106, 119, 129, 121, 113, 101, 84, 63, 38
Offset: 1
Northwest corner:
1....3....7...16...
2...11...27...36...
4...20...32...47...
5...28...42...60...
A182872
Joint-rank array of the numbers p^j, where p is a prime congruent to 1 mod 4 and j>=1, read by antidiagonals.
Original entry on oeis.org
1, 4, 2, 16, 20, 3, 25, 29, 24, 5, 31, 45, 33, 26, 6, 40, 55, 52, 43, 27, 7, 51, 71, 63, 59, 49, 28, 8, 57, 83, 79, 78, 65, 50, 30, 9, 66, 97, 92, 95, 84, 68, 53, 32, 10, 76, 111, 108, 113, 104, 87, 75, 54, 34, 11, 81, 123, 122, 131, 120, 105, 93, 77, 56
Offset: 1
Northwest corner:
1....4...16...25...
2...20...29...45...
3...24...33...52...
5...26...43...59...
A283938
Interspersion of the signature sequence of tau^2, where tau = (1 + sqrt(5))/2 = golden ratio.
Original entry on oeis.org
1, 4, 2, 10, 6, 3, 18, 13, 8, 5, 29, 22, 16, 11, 7, 43, 34, 26, 20, 14, 9, 59, 49, 39, 31, 24, 17, 12, 78, 66, 55, 45, 36, 28, 21, 15, 99, 86, 73, 62, 51, 41, 33, 25, 19, 123, 108, 94, 81, 69, 57, 47, 38, 30, 23, 150, 133, 117, 103, 89, 76, 64, 53, 44, 35
Offset: 1
Northwest corner:
1 4 10 18 29 43 59 78 99 123
2 6 13 22 34 49 66 86 108 133
3 8 16 26 39 55 73 94 117 143
5 11 20 31 45 62 81 103 127 154
7 14 24 36 51 69 89 112 137 165
9 17 28 41 57 76 97 121 147 176
From _Indranil Ghosh_, Mar 19 2017: (Start)
Triangle formed when the array is read by antidiagonals:
1;
4, 2;
10, 6, 3;
18, 13, 8, 5;
29, 22, 16, 11, 7;
43, 34, 26, 20, 14, 9;
59, 49, 39, 31, 24, 17, 12;
78, 66, 55, 45, 36, 28, 21, 15;
99, 86, 73, 62, 51, 41, 33, 25, 19;
123, 108, 94, 81, 69, 57, 47, 38, 30, 23;
...
(End)
-
r = GoldenRatio^2; z = 100;
s[0] = 1; s[n_] := s[n] = s[n - 1] + 1 + Floor[n*r];
u = Table[n + 1 + Sum[Floor[(n - k)/r], {k, 0, n}], {n, 0, z}] (* A283968, row 1 of A283938 *)
v = Table[s[n], {n, 0, z}] (* A283969, col 1 of A283938 *)
w[i_, j_] := v[[i]] + u[[j]] + (i - 1)*(j - 1) - 1;
Grid[Table[w[i, j], {i, 1, 10}, {j, 1, 10}]] (* A283938, array *)
Flatten[Table[w[k, n - k + 1], {n, 1, 20}, {k, 1, n}]] (* A283938, sequence *)
-
\\ This code produces the triangle mentioned in the example section
r = (3 +sqrt(5))/2;
z = 100;
s(n) = if(n<1, 1, s(n - 1) + 1 + floor(n*r));
p(n) = n + 1 + sum(k=0, n, floor((n - k)/r));
u = v = vector(z + 1);
for(n=1, 101, (v[n] = s(n - 1)));
for(n=1, 101, (u[n] = p(n - 1)));
w(i,j) = v[i] + u[j] + (i - 1) * (j - 1) - 1;
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(w(n - k + 1, k),", ");); print(););};
tabl(10) \\ Indranil Ghosh, Mar 19 2017
Showing 1-10 of 29 results.
Comments