cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020999 Conjectured number of irreducible multiple zeta values of depth n and weight 3n (confirmed up to n=7).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 10, 14, 17, 24, 30, 41, 53, 72, 93, 126, 165, 222, 293, 395, 522, 704, 936, 1259, 1681, 2263, 3027, 4079, 5470, 7371, 9906, 13361, 17980, 24271, 32712, 44182, 59626, 80598, 108879, 147285, 199165
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014097.

Programs

  • Mathematica
    max = 50; ClearAll[a]; coes = CoefficientList[ Series[ Product[ (1-x^n)^a[n-1], {n, 0, max}] - (1-x-x^4), {x, 0, max}] /. 0^A020999%20=%20Table%5B%20a%5Bn%5D,%20%7Bn,%200,%20max-1%7D%5D(*%20From%20_Jean-Fran%C3%A7ois%20Alcover"> -> 1, x]; eq = Rest[ Thread[ coes == 0]]; s[1] = Solve[ eq[[1]], a[0]][[1]]; a[0] = a[0] /. s[1][[1]]; Print[a[0]]; Do[ eq = Rest[eq] /. s[n]; s[n+1] = Solve[ eq[[1]], a[n]][[1]]; a[n] = a[n] /. s[n+1][[1]]; Print[a[n]], {n, 1, max-1}]; A020999 = Table[ a[n], {n, 0, max-1}](* From _Jean-François Alcover, Jan 31 2012, after formula *)

Formula

Product_n (1-x^n)^{a(n)} = 1-x-x^4; equivalently, a(n) = (1/n) sum_{ d divides n } mu(n/d) A014097(d).