A021165 Decimal expansion of 1/161.
0, 0, 6, 2, 1, 1, 1, 8, 0, 1, 2, 4, 2, 2, 3, 6, 0, 2, 4, 8, 4, 4, 7, 2, 0, 4, 9, 6, 8, 9, 4, 4, 0, 9, 9, 3, 7, 8, 8, 8, 1, 9, 8, 7, 5, 7, 7, 6, 3, 9, 7, 5, 1, 5, 5, 2, 7, 9, 5, 0, 3, 1, 0, 5, 5, 9, 0, 0, 6, 2, 1, 1, 1, 8, 0, 1, 2, 4, 2, 2, 3, 6, 0, 2, 4, 8, 4, 4, 7, 2, 0, 4, 9, 6, 8, 9, 4, 4, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
Mathematica
Join[{0,0},RealDigits[1/161,10,120][[1]]] (* Harvey P. Dale, Dec 21 2022 *) realDigitsRecip[161] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Nov 20 2024 *)
-
PARI
1/161. \\ Altug Alkan, Sep 06 2016
Formula
From Chai Wah Wu, Sep 05 2016: (Start)
a(n) = a(n-1) - a(n-33) + a(n-34) for n > 33.
G.f.: x^2*(-9*x^31 + 4*x^30 + 5*x^28 - x^27 - 2*x^26 + 3*x^25 - 5*x^24 - 4*x^23 + 2*x^22 + 5*x^21 - 3*x^20 + 4*x^18 - 4*x^17 - 2*x^16 - 2*x^15 + 6*x^14 - 3*x^13 - x^12 + 2*x^10 - 2*x^9 - x^8 - x^7 + 8*x^6 - 7*x^5 + x^2 + 4*x - 6)/(x^34 - x^33 + x - 1). (End)
Comments