A021421 Decimal expansion of 1/417.
0, 0, 2, 3, 9, 8, 0, 8, 1, 5, 3, 4, 7, 7, 2, 1, 8, 2, 2, 5, 4, 1, 9, 6, 6, 4, 2, 6, 8, 5, 8, 5, 1, 3, 1, 8, 9, 4, 4, 8, 4, 4, 1, 2, 4, 7, 0, 0, 2, 3, 9, 8, 0, 8, 1, 5, 3, 4, 7, 7, 2, 1, 8, 2, 2, 5, 4, 1, 9, 6, 6, 4, 2, 6, 8, 5, 8, 5, 1, 3, 1, 8, 9, 4, 4, 8, 4, 4, 1, 2, 4, 7, 0, 0, 2, 3, 9, 8, 0
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
realDigitsRecip[417] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Jul 18 2025 *)
Formula
From Chai Wah Wu, Sep 04 2025: (Start)
a(n) = a(n-46) for n > 45.
G.f.: x^2*(-7*x^43 - 4*x^42 - 2*x^41 - x^40 - 4*x^39 - 4*x^38 - 8*x^37 - 4*x^36 - 4*x^35 - 9*x^34 - 8*x^33 - x^32 - 3*x^31 - x^30 - 5*x^29 - 8*x^28 - 5*x^27 - 8*x^26 - 6*x^25 - 2*x^24 - 4*x^23 - 6*x^22 - 6*x^21 - 9*x^20 - x^19 - 4*x^18 - 5*x^17 - 2*x^16 - 2*x^15 - 8*x^14 - x^13 - 2*x^12 - 7*x^11 - 7*x^10 - 4*x^9 - 3*x^8 - 5*x^7 - x^6 - 8*x^5 - 8*x^3 - 9*x^2 - 3*x - 2)/(x^46 - 1). (End)