cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022032 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(5,26).

Original entry on oeis.org

5, 26, 135, 700, 3629, 18813, 97527, 505582, 2620947, 13587040, 70435478, 365138879, 1892887004, 9812762803, 50869551972, 263708740319, 1367071205166, 7086923541985, 36738748574433, 190454382472052, 987319198674433, 5118281802804775, 26533271760636405, 137548993480193164
Offset: 0

Views

Author

Keywords

Comments

The empirical g.f. / recurrence agrees with the original definition for at least 2000 terms (and a(2000) ~ 10^1430). - M. F. Hasler, Feb 11 2016

Crossrefs

Programs

  • Mathematica
    (* This empirical recurrence should not be used to extend the data. *) LinearRecurrence[{5, 1, 0, -1, -1, -1, -1}, {5, 26, 135, 700, 3629, 18813, 97527}, 24] (* Jean-François Alcover, Dec 12 2016 *)
  • PARI
    a=[5,26];for(n=2,2000, a=concat(a, ceil(a[n]^2/a[n-1])-1));A022032(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016

Formula

Empirical g.f.: -(x^6+x^5+x^4+x^3-x-5) / (x^7+x^6+x^5+x^4-x^2-5*x+1). - Colin Barker, Sep 18 2015
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for all n > 0. - M. F. Hasler, Feb 11 2016

Extensions

Edited by M. F. Hasler, Feb 11 2016