A022026
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,15).
Original entry on oeis.org
2, 15, 112, 836, 6240, 46576, 347648, 2594880, 19368448, 144568064, 1079070720, 8054293504, 60118065152, 448727347200, 3349346516992, 24999862747136, 186601515909120, 1392812676284416, 10396095346638848, 77597512067973120, 579195715157229568
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Desjarlais and R. Molina, Counting Spanning Trees in Grid Graphs
- Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
- Index entries for linear recurrences with constant coefficients, signature (8,-4).
-
a:= n-> (Matrix([[15,2]]). Matrix([[8, 1], [-4, 0]])^n)[1, 2]:
seq(a(n), n=0..35); # Alois P. Heinz, Mar 18 2009
-
CoefficientList[Series[(2-x)/(1-8*x+4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, May 03 2014 *)
-
a(n)=([15,2]*[8,1;-4,0]^n)[2] \\ M. F. Hasler, Feb 10 2016
A022025
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,102).
Original entry on oeis.org
6, 102, 1735, 29513, 502028, 8539699, 145263729, 2470994700, 42032617843, 714991805825, 12162299391068, 206885624804179, 3519208035780561, 59863150041598764, 1018296359995701043, 17321632357467588641, 294647962336362325244, 5012080843035687303187
Offset: 0
-
a:= proc(n) option remember;
`if`(n<2, [6, 102][n+1], floor(a(n-1)^2/a(n-2))+1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 18 2015
-
a[n_] := a[n] = Switch[n, 0, 6, 1, 102, _, 1 + Floor[a[n-1]^2/a[n-2]]];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
-
a=[6,102];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
A022031
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,17).
Original entry on oeis.org
4, 17, 72, 304, 1283, 5414, 22845, 96397, 406757, 1716352, 7242319, 30559689, 128949662, 544115986, 2295951781, 9687997993, 40879475731, 172495033261, 727860031657, 3071278144467, 12959565068034, 54684179957837, 230745362360740, 973653116715681, 4108426630946045
Offset: 0
-
a=[4,17];for(n=2,2000,a=concat(a,ceil(a[n]^2/a[n-1])-1));A022031(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
A022024
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,66).
Original entry on oeis.org
6, 66, 727, 8009, 88232, 972018, 10708349, 117969769, 1299627646, 14317498734, 157730385799, 1737655093709, 19143078927992, 210891949829430, 2323315631208341, 25595076182769253, 281971126093205254, 3106367622527151978, 34221659288246953735, 377006879658404795777
Offset: 0
-
A022024 := proc(n)
option remember;
if n <= 1 then
op(n+1,[6,66]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a,'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
-
a[n_] := a[n] = Switch[n, 0, 6, 1, 66, _, Floor[a[n-1]^2/a[n-2]]+1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2024 *)
-
a=[6,66];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
-
def a(n):
if n == 0: return 6
prev_1, prev_2 = 66, 6
for i in range(2, n + 1):
prev_2, prev_1 = prev_1, (prev_1 ** 2) // prev_2 + 1
return prev_1 # Paul Muljadi, Feb 12 2024
Double-checked and extended to 3 lines of data by
M. F. Hasler, Feb 10 2016
A022027
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,16).
Original entry on oeis.org
2, 16, 127, 1008, 8000, 63492, 503904, 3999232, 31739888, 251903488, 1999230976, 15866888256, 125927492096, 999423012864, 7931916549888, 62951622430720, 499615287394304, 3965194632954880, 31469750573916160, 249759543441752064, 1982215569002196992, 15731845549721911296
Offset: 0
-
I:=[2,16]; [n le 2 select I[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..30]]; // Vincenzo Librandi, Feb 12 2016
-
RecurrenceTable[{a[1] == 2, a[2] == 16, a[n] == Ceiling[a[n-1]^2 / a[n-2] - 1]}, a, {n, 30}] (* Vincenzo Librandi, Feb 12 2016 *)
-
a=[2, 16]; for(n=2, 1000, a=concat(a, ceil(a[n]^2/a[n-1])-1)); A022027(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
Double-checked (original definition agrees with g.f. / recurrence for n=0..1000), extended and edited by
M. F. Hasler, Feb 11 2016
A022021
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,20).
Original entry on oeis.org
5, 20, 81, 329, 1337, 5434, 22086, 89767, 364852, 1482917, 6027219, 24497237, 99567416, 404685244, 1644816681, 6685249720, 27171759829, 110437838993, 448867366641, 1824392026070, 7415121953942, 30138277741915, 122495056843392, 497873139253657, 2023572780632275
Offset: 0
-
A022021 := proc(n)
option remember;
if n <= 1 then
op(n+1,[5,20]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a,'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
-
a=[5,20];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
Double-checked and extended to 3 lines of data by
M. F. Hasler, Feb 10 2016
A022022
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(5,45).
Original entry on oeis.org
5, 45, 406, 3664, 33067, 298425, 2693244, 24306152, 219359637, 1979690177, 17866428166, 161242026212, 1455186832835, 13132858524565, 118522219370436, 1069646525028644, 9653410934956277, 87120689404042085, 786252089896134534, 7095815621924558952, 64038747861388870507
Offset: 0
-
a:= proc(n) option remember;
`if`(n<2, [5, 45][n+1], floor(a(n-1)^2/a(n-2))+1)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 18 2015
-
nxt[{a_,b_}]:=Module[{c=Ceiling[b^2/a]},c=If[c<=b^2/a,c+1,c];{b,c}]; Transpose[NestList[nxt,{5,45},20]][[1]] (* Harvey P. Dale, Feb 11 2014 *)
-
a=[5,45];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
A022023
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,30).
Original entry on oeis.org
6, 30, 151, 761, 3836, 19337, 97477, 491378, 2477019, 12486565, 62944332, 317300149, 1599498817, 8063016906, 40645382751, 204891935393, 1032852992092, 5206575364849, 26246162074765, 132305973770306, 666949729466899, 3362069972805741, 16948075698414380
Offset: 0
-
A022023 := proc(n)
option remember;
if n <= 1 then
op(n+1,[6,30]) ;
else
a := procname(n-1)^2/procname(n-2) ;
if type(a,'integer') then
a+1 ;
else
ceil(a) ;
fi;
end if;
end proc: # R. J. Mathar, Feb 10 2016
-
a=[6,30];for(n=2,30,a=concat(a,a[n]^2\a[n-1]+1));a \\ M. F. Hasler, Feb 10 2016
Double-checked and extended to 3 lines of data by
M. F. Hasler, Feb 10 2016
A022028
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(2,32).
Original entry on oeis.org
2, 32, 511, 8160, 130304, 2080776, 33227136, 530591744, 8472821696, 135299330048, 2160544546816, 34500930175488, 550932488167424, 8797635454304256, 140486159827464192, 2243371097334087680, 35823556473710968832, 572053014300755787776, 9134901260033419902976
Offset: 0
-
a=[2,32];for(n=2,2000,a=concat(a,ceil(a[n]^2/a[n-1])-1));A022028(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
A022030
For even n, a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n); for odd n, the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n); a(0) = 4, a(1) = 16.
Original entry on oeis.org
4, 16, 63, 249, 984, 3889, 15370, 60745, 240075, 948819, 3749901, 14820274, 58572352, 231488326, 914882931, 3615779646, 14290202610, 56477415835, 223208766625, 882160643536, 3486455360919, 13779090092886, 54457408494633, 215225339261149, 850608722312629, 3361756570848769
Offset: 0
-
a=[4,16];for(n=2,2000,a=concat(a,if(bittest(n,0),a[n]^2\a[n-1]+1,ceil(a[n]^2/a[n-1])-1)));A022030(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
Edited (definition changed to fit data, extended to 3 lines) by
M. F. Hasler, Feb 11 2016
Showing 1-10 of 10 results.
Comments