A166947 Number of ways of writing n as the sum of 2^n squares.
1, 4, 24, 448, 29152, 6448000, 4799359488, 12099984537600, 104875315518635520, 3178565207840143938560, 342288453932192597037125632, 132776310046929259464457969090560
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 4*x + 24*x^2 + 448*x^3 + 29152*x^4 + 6448000*x^5 +... Let F(x) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2), then A(x) = 1 + log(F(2*x)) + log(F(4*x))^2/2! + log(F(8*x))^3/3! + ... Illustrate a(n) = [x^n] F(x)^(2^n) by forming a table of coefficients in powers F(x)^(2^n), which begin: F^(2^0): [(1), 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, ...]; F^(2^1): [1, (4), 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, ...]; F^(2^2): [1, 8, (24), 32, 24, 48, 96, 64, 24, 104, 144, 96, ...]; F^(2^3): [1, 16, 112, (448), 1136, 2016, 3136, 5504, 9328, ...]; F^(2^4): [1, 32, 480, 4480, (29152), 140736, 525952, 1580800, ...]; F^(2^5): [1, 64, 1984, 39680, 575424, (6448000), 58115328, ...]; F^(2^6): [1, 128, 8064, 333312, 10166144, 244000512, (4799359488), ...]; F^(2^7): [1, 256, 32512, 2731008, 170688256, 8466189824, 347119309824, (12099984537600), ...]; ... and noting that the coefficients along the diagonal (in parenthesis) form the initial terms of this sequence.
Crossrefs
Programs
-
PARI
{a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(2^n),n)}
-
PARI
{a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n)); polcoeff(sum(k=0,n,log(subst(THETA3,x,2^k*x))^k/k!),n)}
Formula
a(n) equals the coefficient of x^n in the (2^n)-th power of Jacobi theta_3(x).
G.f.: A(x) = Sum_{n>=0} log( theta_3(2^n*x) )^n/n! where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).