cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022186 Triangle of Gaussian binomial coefficients [ n,k ] for q = 22.

Original entry on oeis.org

1, 1, 1, 1, 23, 1, 1, 507, 507, 1, 1, 11155, 245895, 11155, 1, 1, 245411, 119024335, 119024335, 245411, 1, 1, 5399043, 57608023551, 1267490143415, 57608023551, 5399043, 1, 1, 118778947, 27882288797727, 13496292655106471
Offset: 0

Views

Author

Keywords

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

Programs

  • Mathematica
    Table[QBinomial[n,k,22], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 22; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten  (* G. C. Greubel, May 30 2018 *)
  • PARI
    {q=22; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 30 2018

Formula

T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=22. - G. C. Greubel, May 30 2018