A022188 Triangle of Gaussian binomial coefficients [ n,k ] for q = 24.
1, 1, 1, 1, 25, 1, 1, 601, 601, 1, 1, 14425, 346777, 14425, 1, 1, 346201, 199757977, 199757977, 346201, 1, 1, 8308825, 115060940953, 2761654032025, 115060940953, 8308825, 1, 1, 199411801, 66275110297753, 38177220399654553
Offset: 0
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
Links
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Crossrefs
Row sums give A015217.
Programs
-
Mathematica
Table[QBinomial[n,k,24], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 24; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 30 2018 *)
-
PARI
{q=24; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || n
G. C. Greubel, May 30 2018
Formula
T(n,k) = T(n-1,k-1) + q^k * T(n-1,k), with q=24. - G. C. Greubel, May 30 2018