A022329 Exponent of 3 (value of j) in n-th number of form 2^i*3^j (see A003586).
0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 5, 0, 2, 4, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 7, 2, 4, 6, 1, 3, 5, 0, 7, 2, 4, 6, 1, 8, 3, 5, 0, 7, 2, 4, 6, 1, 8, 3, 5, 0, 7, 2, 9, 4, 6, 1, 8, 3, 5, 0, 7, 2, 9, 4, 6, 1, 8, 3, 10, 5, 0, 7, 2, 9, 4, 6, 1, 8, 3, 10, 5, 0, 7
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from Franklin T. Adams-Watters)
Crossrefs
Cf. A069352.
Programs
-
Haskell
a022329 n = a022329_list !! (n-1) -- Where a022329_list is defined in A022328. -- Reinhard Zumkeller, Nov 19 2015, May 16 2015
-
Mathematica
IntegerExponent[Select[Range[10^5], # == 2^IntegerExponent[#, 2] * 3^IntegerExponent[#, 3] &], 3] (* Amiram Eldar, Apr 15 2024 *)
-
Python
from sympy import integer_log def A022329(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) return integer_log((m:=bisection(f,n,n))>>(~m&m-1).bit_length(),3)[0] # Chai Wah Wu, Sep 15 2024
Formula
a(n) = A191476(n) - 1. - Franklin T. Adams-Watters, Mar 19 2009
Extensions
Edited by N. J. A. Sloane, May 26 2024