A022423 Kim-sums: "Kimberling sums" K_n + K_12.
11, 31, 34, 36, 39, 42, 44, 47, 49, 52, 55, 57, 60, 63, 65, 68, 70, 73, 76, 78, 81, 83, 86, 89, 91, 94, 97, 99, 102, 104, 107, 110, 112, 115, 118, 120, 123, 125, 128, 131, 133, 136, 138, 141, 144, 146, 149, 152, 154, 157, 159, 162, 165, 167, 170, 172, 175, 178, 180
Offset: 0
Keywords
References
- Posting to math-fun mailing list Jan 10 1997.
Links
- J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
Crossrefs
Programs
-
Maple
Ki := proc(n,i) option remember; local phi ; phi := (1+sqrt(5))/2 ; if i= 0 then n; elif i=1 then floor((n+1)*phi) ; else procname(n,i-1)+procname(n,i-2) ; end if; end proc: Kisum := proc(n,m) local ks,a,i; ks := [seq( Ki(n,i)+Ki(m,i),i=0..5)] ; for i from 0 to 2 do for a from 0 do if Ki(a,0) = ks[i+1] and Ki(a,1) = ks[i+2] then return a; end if; if Ki(a,0) > ks[i+1] then break; end if; end do: end do: end proc: A022423 := proc(n) if n = 0 then 11; else Kisum(n-1,11) ; end if; end proc: seq(A022423(n),n=0..80) ; # R. J. Mathar, Sep 03 2016
-
Mathematica
Ki[n_, i_] := Ki[n, i] = Module[{phi = (1 + Sqrt[5])/2}, If[i == 0, n, If[i == 1, Floor[(n+1)*phi], Ki[n, i-1] + Ki[n, i-2]]]]; Kisum[n_, m_] := Module[{ks, a, i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i+1]] && Ki[a, 1] == ks[[i+2]], Return[a]]; If[Ki[a, 0] > ks[[i+1]], Break[]]]]]; a[n_] := If[n == 0, 11, Kisum[n-1, 11]]; a /@ Range[0, 58] (* Jean-François Alcover, Mar 29 2020, after R. J. Mathar *)