cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297321 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 7, 0, 1, 5, 14, 28, 28, 15, 0, 1, 6, 20, 48, 69, 64, 25, 0, 1, 7, 27, 75, 137, 174, 133, 43, 0, 1, 8, 35, 110, 240, 380, 413, 266, 64, 0, 1, 9, 44, 154, 387, 726, 998, 933, 513, 120, 0, 1, 10, 54, 208, 588, 1266, 2075, 2488, 2046, 1000, 186, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 20)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 107*k + 42)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 335*k^2 + 810*k + 624)*x^5 + ...
Square array begins:
1,   1,   1,    1,    1,    1,  ...
0,   1,   2,    3,    4,    5,  ...
0,   2,   5,    9,   14,   20,  ...
0,   5,  14,   28,   48,   75,  ...
0,   7,  28,   69,  137,  240,  ...
0,  15,  64,  174,  380,  726,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + j*x^j)^k.

A022740 Expansion of Product (1-m*q^m)^-16; m=1..inf.

Original entry on oeis.org

1, 16, 168, 1376, 9604, 59488, 335904, 1758816, 8646986, 40281296, 179065184, 763837600, 3140732344, 12494160288, 48236274976, 181203877248, 663837626163, 2376282980272, 8325497904672
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=16 of A297328.

Programs

  • Maple
    N:= 30: # for a(0)..a(N)
    P:= mul(1-m*q^m,m=1..N):
    S:= series(P,q,N+1):
    S16:= series(S^(-16),q,N+1):
    seq(coeff(S16,q,i),i=0..N); # Robert Israel, Dec 22 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^16, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 23 2019 *)
Showing 1-2 of 2 results.