A022735 Expansion of Product_{m>=1} (1-m*q^m)^-11.
1, 11, 88, 561, 3124, 15642, 72303, 312708, 1280235, 4999247, 18739589, 67751289, 237202702, 806779050, 2673066187, 8647158487, 27365420159, 84865235213, 258285903491, 772463952667, 2272807540322, 6585644471945
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
n:=50; R
:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^11:m in [1..n]])); // G. C. Greubel, Jul 25 2018 -
Mathematica
With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^-11, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 25 2018 *)
-
PARI
m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^-11)) \\ G. C. Greubel, Jul 25 2018