cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022856 a(n) = n-2 + Sum_{i = 1..n-2} (a(i+1) mod a(i)) for n >= 3 with a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227
Offset: 1

Views

Author

Keywords

Comments

Essentially triangular numbers + 2, but with three extra initial terms.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n<4, 1, (n^2-7n+16)/2]; Array[a, 60] (* Jean-François Alcover, Mar 08 2017 *)
  • PARI
    for(n=1,100, print1(if(n<4, 1, (n^2 - 7*n +16)/2), ", ")) \\ G. C. Greubel, Jul 13 2017

Formula

For n > 3, a(n) = (n^2 - 7*n + 16)/2 = A027689(n-4)/2 = A000217(n-4) + 2 = A000124(n-4) + 1. - Henry Bottomley, Jun 27 2000
a(n) = Sum_{k=0..2} A007318(n-k-2, k) for n > 3. - Johannes W. Meijer, Aug 11 2013
Sum_{n>=1} 1/a(n) = 3 + 2*Pi*tanh(sqrt(15)*Pi/2)/sqrt(15). - Amiram Eldar, Dec 13 2022