cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A022907 The sequence m(n) in A022905.

Original entry on oeis.org

0, 2, 5, 8, 14, 20, 29, 38, 53, 68, 89, 110, 140, 170, 209, 248, 302, 356, 425, 494, 584, 674, 785, 896, 1037, 1178, 1349, 1520, 1730, 1940, 2189, 2438, 2741, 3044, 3401, 3758, 4184, 4610, 5105, 5600, 6185, 6770, 7445, 8120, 8906, 9692, 10589
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    a123[n_] := a123[n] = If[n == 0, 1, a123[Floor[n/2]] + a123[n-1]];
    a[n_] := If[n == 1, 0, (3/2) a123[n-1] - 1]; Array[a, 50] (* Jean-François Alcover, Dec 04 2018 *)
  • Python
    from itertools import islice
    from collections import deque
    def A022907_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (0, 2, 5)
        while True:
            a += b
            yield 3*a-1
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A022907_list = list(islice(A022907_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = 3 * A033485(n-1) - 1 = (3/2) * A000123(n-1) - 1, n>1. Proved by Jeremy Dover. - Ralf Stephan, Dec 08 2004

A022908 The sequence M(n) in A022905.

Original entry on oeis.org

0, 2, 5, 11, 20, 35, 56, 86, 125, 179, 248, 338, 449, 590, 761, 971, 1220, 1523, 1880, 2306, 2801, 3386, 4061, 4847, 5744, 6782, 7961, 9311, 10832, 12563, 14504, 16694, 19133, 21875, 24920, 28322, 32081, 36266, 40877, 45983, 51584
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    (* b = A022905 *) b[1] = 1; b[n_] := b[n] = b[n-1] + 1 + If[EvenQ[n], 2 b[n/2], b[(n-1)/2] + b[(n+1)/2]];
    a[1] = 0; a[n_] := b[n-1] + 1;
    Array[a, 50] (* Jean-François Alcover, Nov 11 2018 *)
  • Python
    from itertools import islice
    from collections import deque
    def A022908_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (0,2)
        while True:
            a += b
            aqueue.append(a)
            if f:
                yield (3*a+1)//2
                b = aqueue.popleft()
            f = not f
    A022908_list = list(islice(A022908_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = n + Sum_{k=1..n-1} A022907(k), n > 1. [corrected by Sean A. Irvine, May 22 2019]
a(1) = 0; a(n) = (1+3*A033485(2*n-3))/2 = A022905(n-1)+1, n > 1. - Philippe Deléham, May 30 2006
Showing 1-2 of 2 results.