A022908 The sequence M(n) in A022905.
0, 2, 5, 11, 20, 35, 56, 86, 125, 179, 248, 338, 449, 590, 761, 971, 1220, 1523, 1880, 2306, 2801, 3386, 4061, 4847, 5744, 6782, 7961, 9311, 10832, 12563, 14504, 16694, 19133, 21875, 24920, 28322, 32081, 36266, 40877, 45983, 51584
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- J. M. Dover, On two OEIS conjectures, arXiv:1606.08033 [math.CO], 2016.
Programs
-
Mathematica
(* b = A022905 *) b[1] = 1; b[n_] := b[n] = b[n-1] + 1 + If[EvenQ[n], 2 b[n/2], b[(n-1)/2] + b[(n+1)/2]]; a[1] = 0; a[n_] := b[n-1] + 1; Array[a, 50] (* Jean-François Alcover, Nov 11 2018 *)
-
Python
from itertools import islice from collections import deque def A022908_gen(): # generator of terms aqueue, f, b, a = deque([2]), True, 1, 2 yield from (0,2) while True: a += b aqueue.append(a) if f: yield (3*a+1)//2 b = aqueue.popleft() f = not f A022908_list = list(islice(A022908_gen(),40)) # Chai Wah Wu, Jun 08 2022
Formula
a(n) = n + Sum_{k=1..n-1} A022907(k), n > 1. [corrected by Sean A. Irvine, May 22 2019]