cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022912 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of k's.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 3, 4, 2, 2, 3, 2, 2, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 2, 6, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 2, 2, 3, 2, 2, 2, 6, 2, 3, 4, 2, 2, 2, 5, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

In case of duplicates, the k values are listed in increasing order. Thus a(18)=2 and a(19)=3 corresponding to binomial(16,2)=binomial(10,3)=120.

Crossrefs

Programs

  • Maple
    N:= 10000: # for binomial(n, k) values <= N
    Res:= NULL:
    for n from 2 while n*(n-1)/2 <= N do
      for k from 2 to n/2 do
        v:= binomial(n, k);
        if v > N then break fi;
        Res:= Res, [v, n, k]
    od od:
    Res:= sort([Res], proc(p, q) if p[1]<>q[1] then  p[1]q[2] then p[2]>q[2]
    fi end proc): map(t -> t[3], Res); # Robert Israel, Sep 18 2018

Formula

A319382(n) = binomial(A022911(n),a(n)). - Robert Israel, Sep 18 2018

Extensions

Corrected by Robert Israel, Sep 18 2018