cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A022911 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m/2) in increasing order (not removing duplicates); record the sequence of m's.

Original entry on oeis.org

4, 5, 6, 6, 7, 8, 7, 9, 10, 11, 8, 12, 8, 13, 9, 14, 15, 16, 10, 9, 17, 18, 11, 19, 20, 21, 10, 12, 22, 10, 23, 24, 13, 25, 26, 11, 27, 14, 28, 29, 30, 15, 11, 31, 12, 32, 33, 16, 34, 35, 36, 37, 17, 38, 13, 39, 40, 12, 18, 41, 42, 43, 12, 44, 19, 45, 14, 46, 47, 48
Offset: 1

Views

Author

Keywords

Comments

In case of duplicates, the m values are listed in decreasing order. Thus a(18)=16 and a(19)=10 corresponding to binomial(16,2)=binomial(10,3)=120. - Robert Israel, Sep 18 2018

Crossrefs

Programs

  • Maple
    N:= 10000: # for binomial(n,k) values <= N
    Res:= NULL:
    for n from 2 while n*(n-1)/2 <= N do
      for k from 2 to n/2 do
        v:= binomial(n,k);
        if v > N then break fi;
        Res:= Res,[v,n,k]
    od od:
    Res:= sort([Res],proc(p,q) if p[1]<>q[1] then  p[1]q[2] then p[2]>q[2]
      fi end proc):
    map(t -> t[2], Res); # Robert Israel, Sep 18 2018

Formula

A319382(n) = binomial(a(n),A022912(n)). - Robert Israel, Sep 18 2018

A319382 Binomial coefficients binomial(m,k) for 2 <= k <= m/2 in sorted order.

Original entry on oeis.org

6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 120, 120, 126, 136, 153, 165, 171, 190, 210, 210, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816, 820, 861, 903, 924
Offset: 1

Views

Author

Robert Israel, Sep 18 2018

Keywords

Comments

In contrast to A006987, here the duplicates are not removed. Thus 120 = binomial(10,3) = binomial(16,2) appears twice.

Examples

			The first three terms are binomial(4,2) = 6, binomial(5,2) = 10, binomial(6,2) = 15.
		

Crossrefs

Cf. A003015, A006987, A022911 (values of m), A022912 (values of k).

Programs

  • Maple
    N:= 10^3: # to get terms <= N
    Res:= NULL:
    for n from 2 while n*(n-1)/2 <= N do
      for k from 2 to n/2 do
        v:= binomial(n,k);
        if v > N then break fi;
        Res:= Res,v
    od od:
    sort([Res]);
  • Mathematica
    M = 10^3;
    Reap[For[n = 2, n(n-1)/2 <= M, n++, For[k = 2, k <= n/2, k++, v = Binomial[n, k]; If[v > N, Break[]]; Sow[v]]]][[2, 1]] // Sort (* Jean-François Alcover, Apr 27 2019, from Maple *)

Formula

a(n) = binomial(A022911(n),A022912(n)).

A318955 Binomial(A319500(n),a(n)) = A006917(n) with 2 <= a(n) <= A319500(n)/2.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 3, 4, 2, 2, 3, 2, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 2, 3, 5, 2, 4, 2, 2, 3, 2, 2, 2, 2, 3, 2, 4, 2, 2, 5, 3, 2, 2, 2, 6, 2, 3, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 3, 4, 2, 2, 2, 3, 2, 2, 2, 6, 2, 3, 4, 2, 2, 2, 5, 2, 3, 2, 2, 2, 2, 3, 2
Offset: 1

Views

Author

Robert Israel, Sep 20 2018

Keywords

Comments

First differs from A022912 at n=18.

Examples

			a(3) = 6 because A006987(3) = 15 = binomial(6,2).
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for binomial(n, k) values <= N
    S:= {}:
    for n from 2 while n*(n-1)/2 <= N do
      for k from 2 to n/2 do
        v:= binomial(n, k);
        if v > N then break fi;
        if not member(v,S) then
          S:= S union {v};
          K[v]:= k;
        fi
    od od:
    A006987:= sort(convert(S,list)):
    seq(K[A006987[i]],i=1..nops(A006987));

A374691 The smallest m+k such that n can be written as n=binomial(m,k).

Original entry on oeis.org

0, 3, 4, 5, 6, 6, 8, 9, 10, 7, 12, 13, 14, 15, 8, 17, 18, 19, 20, 9, 9, 23, 24, 25, 26, 27, 28, 10, 30, 31, 32, 33, 34, 35, 10, 11, 38, 39, 40, 41, 42, 43, 44, 45, 12, 47, 48, 49, 50, 51, 52, 53, 54, 55, 13, 11, 58, 59, 60, 61, 62, 63, 64, 65, 66, 14, 68, 69, 70, 12, 72, 73, 74, 75, 76, 77, 78, 15, 80, 81
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2024

Keywords

Comments

This is most often a(n) = n+1 because the n that do not appear in the "main" body of the Pascal Triangle appear at last at k=1.

Examples

			Searching along upwards diagonals, the 6 appears first at 6=binomial(4,2) with m+k=4+2=6, so a(6)=6. The 10 appears first at 10=binomial(5,2) with m+k=7, so a(10)=7.
		

Crossrefs

Programs

  • Maple
    A374691 := proc(n)
        local mk,k,m ;
        for mk from 0 to n+1 do
            for k from 0 to mk/2 do
                m := mk-k ;
                if binomial(m,k) = n then
                    return mk ;
                end if;
            end do:
        end do:
        return -1 ;
    end proc:
    seq( A374691(n),n=1..80) ;

A022913 Arrange the nontrivial binomial coefficients C(m,k) (2 <= k <= m-2) in increasing order; record the positions of the central binomial coefficients.

Original entry on oeis.org

1, 4, 13, 30, 63, 124, 233, 431, 798, 1480, 2772, 5232, 9964, 19120, 36931, 71711, 139843, 273633, 536868, 1055596, 2079074, 4100581, 8096797, 16002508, 31652202, 62648233, 124068507
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Terms corrected by Sean A. Irvine, May 27 2019
Showing 1-5 of 5 results.