cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A022996 a(n) = 40-n.

Original entry on oeis.org

40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A023481 n-39.

Original entry on oeis.org

-39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = -A022995(n). G.f.: (-39 + 40*x)/(1 - x)^2. - M. F. Hasler, Apr 18 2015

A022959 a(n) = 3-n.

Original entry on oeis.org

3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    3 - Range[0, 100]  (* Paolo Xausa, Jul 28 2024 *)

Formula

G.f.: ( 3-4*x ) / (x-1)^2 . - R. J. Mathar, Aug 06 2015

A022966 a(n) = 10-n.

Original entry on oeis.org

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    10 - Range[0, 100] (* Paolo Xausa, Jul 29 2024 *)

Formula

G.f.: ( 10-11*x ) / ( (x-1)^2 ). - R. J. Mathar, Aug 26 2015

A022960 a(n) = 4-n.

Original entry on oeis.org

4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (4-5*x) / (x-1)^2. - R. J. Mathar, Aug 06 2015

A022961 a(n) = 5-n.

Original entry on oeis.org

5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    5-Range[0,60] (* or *) LinearRecurrence[{2,-1},{5,4},60] (* Harvey P. Dale, Jul 23 2016 *)

Formula

G.f.: (5-6*x) / (x-1)^2. - R. J. Mathar, Aug 06 2015

A022962 a(n) = 6-n.

Original entry on oeis.org

6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    6 - Range[0, 100] (* Paolo Xausa, Jul 28 2024 *)

Formula

G.f.: ( 6-7*x ) / (x-1)^2 . - R. J. Mathar, Aug 06 2015

A022963 a(n) = 7-n.

Original entry on oeis.org

7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    7-Range[0,60] (* or *) NestList[#-1&,7,60] (* Harvey P. Dale, Jul 13 2019 *)

Formula

G.f.: ( 7-8*x ) / ( (x-1)^2 ). - R. J. Mathar, Aug 26 2015

A022964 a(n) = 8-n.

Original entry on oeis.org

8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: ( 8-9*x ) / ( (x-1)^2 ). - R. J. Mathar, Aug 26 2015

A022965 a(n) = 9-n.

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51
Offset: 0

Views

Author

Keywords

Crossrefs

The negative of A023451.

Programs

  • Mathematica
    9 - Range[0, 100] (* Paolo Xausa, Jul 28 2024 *)

Formula

G.f.: ( 9-10*x ) / ( (x-1)^2 ). - R. J. Mathar, Aug 26 2015
Showing 1-10 of 36 results. Next