A023042 Numbers whose cube is the sum of three distinct nonnegative cubes.
6, 9, 12, 18, 19, 20, 24, 25, 27, 28, 29, 30, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 53, 54, 56, 57, 58, 60, 63, 66, 67, 69, 70, 71, 72, 75, 76, 78, 80, 81, 82, 84, 85, 87, 88, 89, 90, 92, 93, 95, 96, 97, 99, 100, 102, 103, 105, 106, 108, 110, 111, 112, 113
Offset: 1
Keywords
Examples
20 belongs to the sequence as 20^3 = 7^3 + 14^3 + 17^3.
References
- Ya. I. Perelman, Algebra can be fun, pp. 142-143.
Links
- Nathaniel Johnston and Chai Wah Wu, Table of n, a(n) for n = 1..10000 (1..1500 from Nathaniel Johnston)
- A. Russell and C. E. Gwyther, The Partition of Cubes, The Mathematical Gazette, 21 (1937), pp. 33-35.
- Index to sequences related to Diophantine equations (3,1,3)
Programs
-
Maple
for w from 1 to 113 do for z from 0 to w-1 do bk:=0: for y from z+1 to w-1 do for x from y+((w+z) mod 2) to w-1 by 2 do if(x^3+y^3+z^3=w^3)then printf("%d, ",w); bk:=1: break: fi: od: if(bk=1)then break: fi: od: if(bk=1)then break: fi: od: od: # Nathaniel Johnston, Jun 22 2013
-
Mathematica
Select[Range[200], n |-> Length[PowersRepresentations[n^3, 3, 3]] > 1] (* Paul C Abbott, May 07 2025 *)
-
PARI
has(n)=my(L=sqrtnint(n-1,3)+1, U=sqrtnint(4*n,3)); fordiv(n,m, if(L<=m && m<=U, my(ell=(m^2-n/m)/3); if(denominator(ell)==1 && issquare(m^2-4*ell), return(1)))); 0 list(lim)=my(v=List(),a3,t); lim\=1; for(a=2,sqrtint(lim\3), a3=a^3; for(b=if(a3>lim, sqrtnint(a3-lim-1,3)+1,1), a-1, t=a3-b^3; if(has(t), listput(v,a)))); Set(v) \\ Charles R Greathouse IV, Jan 25 2018
Comments