A023049 Smallest prime > n having primitive root n, or 0 if no such prime exists.
2, 3, 5, 0, 7, 11, 11, 11, 0, 17, 13, 17, 19, 17, 19, 0, 23, 29, 23, 23, 23, 31, 47, 31, 0, 29, 29, 41, 41, 41, 47, 37, 43, 41, 37, 0, 59, 47, 47, 47, 47, 59, 47, 47, 47, 67, 59, 53, 0, 53, 53, 59, 71, 59, 59, 59, 67, 73, 61, 73, 67, 71, 67, 0, 71, 79, 71, 71, 71, 79, 83, 83, 83, 79
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local p; if issqr(n) then return 0 fi; p:= nextprime(n); do if numtheory:-order(n,p) = p-1 then return p fi; p:= nextprime(p); od end proc: f(1):= 2: map(f, [$1..100]); # Robert Israel, Feb 21 2017
-
Mathematica
a[n_] := For[p = 2, p <= 2 n + 1, p = NextPrime[p], If[MemberQ[ PrimitiveRootList[p], n], Return[p]]] /. Null -> 0; Array[a, 100] (* Jean-François Alcover, Mar 05 2019 *)
-
PARI
A023049(n)={issquare(n)||forprime(p=n+1,,znorder(Mod(n,p))==p-1&&return(p));(n==1)*2} \\ M. F. Hasler, Feb 21 2017
Formula
a(n) = 0 iff n is a square > 1. - M. F. Hasler, Feb 21 2017
Comments