cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056619 Smallest prime with primitive root n, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 2, 0, 2, 11, 2, 3, 2, 7, 2, 5, 2, 3, 2, 0, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 11, 2, 3, 2, 19, 2, 0, 2, 3, 2, 7, 2, 5, 2, 3, 2, 11, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 19, 2, 3, 2, 0, 2, 7, 2, 3, 2, 19, 2, 5, 2, 3, 2, 13, 2, 5, 2, 3, 2, 5, 2, 11, 2, 3, 2, 5, 2, 11, 2, 3, 2, 7, 2, 7, 2, 3, 2
Offset: 1

Views

Author

Robert G. Wilson v, Aug 07 2000

Keywords

Comments

a(n) > n/2 for n in { 2, 6, 10, 34 }. Are there any other such indices n? - M. F. Hasler, Feb 21 2017

Crossrefs

Here the primitive root may be larger than the prime, whereas in A023049 it may not be.

Programs

  • Maple
    f:= proc(n) local p;
       if n::odd then return 2
       elif issqr(n) then return 0
       fi;
       p:= 3;
       do
          if numtheory:-order(n,p) = p-1 then return p fi;
          p:= nextprime(p);
       od
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 21 2017
  • Mathematica
    a[n_] := Module[{p}, If[OddQ[n], Return[2], If[IntegerQ[Sqrt[n]], Return[0], p = 3; While[True, If[MultiplicativeOrder[n, p] == p-1, Return[p]]; p = NextPrime[p]]]]];
    Array[a, 100] (* Jean-François Alcover, Apr 10 2019, after Robert Israel *)
  • PARI
    A056619(n)=forprime(p=2,n*2,gcd(n,p)==1&&znorder(Mod(n,p))==p-1&&return(p)) \\ or, more efficient:
    A056619(n)=if(bittest(n,0),2,!issquare(n)&&forprime(p=3,n*2,gcd(n,p)==1&&znorder(Mod(n,p))==p-1&&return(p))) \\ M. F. Hasler, Feb 21 2017

Formula

a(n) = 0 only for perfect squares, A000290.
a(n) = 2 for all odd n. a(n) = 0 for even squares. a(n) = 3 for n = 2 (mod 6). a(n) = 5 for n in {12, 18, 22, 28} (mod 30). - M. F. Hasler, Feb 21 2017

Extensions

Corrected and extended by Jud McCranie, Mar 21 2002
Corrected by Robert Israel, Feb 21 2017

A377938 a(n) is the least k > n such that n is a primitive root modulo k, or -1 if there is no such k.

Original entry on oeis.org

2, 3, 4, -1, 6, 11, 10, 11, -1, 17, 13, 17, 19, 17, 19, -1, 22, 29, 22, 23, 23, 25, 25, 31, -1, 29, 29, 41, 34, 41, 34, 37, 38, 41, 37, -1, 46, 47, 47, 47, 47, 59, 46, 47, 47, 67, 49, 53, -1, 53, 53, 59, 62, 59, 58, 59, 67, 73, 61, 73, 67, 71, 67, -1, 71, 79, 71, 71, 71, 79, 82, 83, 83, 79, 79
Offset: 1

Views

Author

Robert Israel, Nov 11 2024

Keywords

Comments

a(n) <= A023049(n).
a(n) = 0 iff n is a square > 1.

Examples

			a(6) = 11 because 6 is a primitive root mod 11 and no number from 7 to 10 has 6 as a primitive root.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to allow values <= N
    P:= select(isprime, {seq(i,i=3..N,2)}):
    Cands:= map(proc(t) local i; (seq(t^i,i=1..ilog[t](N)), seq(2*t^i,i=1..ilog[t](N/2))) end proc,P):
    Cands:= sort(convert({4} union Cands, list)):
    Phis:= map(numtheory:-phi, Cands):
    f:= proc(n)
    local k0,k;
          if issqr(n) then return -1 fi;
          k0:= ListTools:-BinaryPlace(Cands,n)+1;
          for k from k0 do
            if igcd(Cands[k],n) = 1 and numtheory:-order(n,Cands[k]) = Phis[k] then return Cands[k] fi
          od
    end proc:
    f(1):= 2:
    map(f, [$1..200]);

A377939 Nonsquares k such that A377938(k) is not a prime.

Original entry on oeis.org

3, 5, 7, 17, 19, 22, 23, 29, 31, 33, 37, 43, 47, 53, 55, 71, 85, 87, 89, 91, 102, 103, 105, 106, 109, 111, 112, 113, 115, 116, 117, 122, 123, 133, 139, 141, 143, 145, 149, 153, 155, 157, 162, 163, 167, 175, 177, 191, 193, 199, 201, 203, 209, 211, 221, 223, 233, 239, 241, 243, 245, 247, 249, 253
Offset: 1

Views

Author

Robert Israel, Nov 11 2024

Keywords

Comments

Numbers k such that k is a primitive root modulo some nonprime x > k but not modulo any prime between k and x.
Numbers k such that 0 < A377938(k) < A023049(k).

Examples

			a(3) = 7 is a term because 7 is a primitive root mod 10, while the least prime > 7 for which 7 is a primitive root is 11.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local k;
      if issqr(n) then return false fi;
      for k from n+1 do
        if igcd(k,n) = 1 and numtheory:-order(n,k) = numtheory:-phi(k) then return not isprime(k) fi
      od
    end proc:
    select(filter, [$2..1000]);
Showing 1-3 of 3 results.