A280015 a(n) is the least k such that A056619(k) = prime(n).
1, 2, 12, 10, 6, 76, 114, 34, 120, 246, 1386, 616, 1126, 3774, 510, 8220, 2634, 25810, 57936, 46836, 12180, 254940, 54574, 80040, 497146, 801780, 402324, 1003744, 6441196, 2858890, 27821214, 14312640, 47848164, 25049814, 8454126, 45433894, 4262890
Offset: 1
Keywords
Examples
10 is a primitive root mod prime(4) = 7, but not mod 2, 3 or 5. This is the least number with that property, so a(4)=10.
Crossrefs
Cf. A056619.
Programs
-
Maple
a[1]:= 1: a[2]:= 2: p:= 3: Cands:= {4,seq(seq(6*i+j,j=[0,4]),i=1..10^7)}: for n from 3 while Cands <> {} do p:= nextprime(p); r:= numtheory:-primroot(p); s:= select(t -> igcd(t,p-1)=1, {$1..p-1}); q:= map(t -> r &^t mod p, s); R,Cands:= selectremove(t -> member(t mod p, q), Cands): if R = {} then break fi; a[n]:= min(R); od: seq(a[i],i=1..n-1);
Comments