A023110 Squares which remain squares when the last digit is removed.
0, 1, 4, 9, 16, 49, 169, 256, 361, 1444, 3249, 18496, 64009, 237169, 364816, 519841, 2079364, 4678569, 26666896, 92294449, 341991049, 526060096, 749609641, 2998438564, 6746486769, 38453641216, 133088524969, 493150849009, 758578289296, 1080936581761
Offset: 1
References
- R. K. Guy, Neg and Reg, preprint, Jan 2012.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..70 (terms 1..38 from David W. Wilson, terms 39..40 from Robert G. Wilson v, terms 41..67 from Dmitry Petukhov)
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Joshua Stucky, Pell's Equation and Truncated Squares, Number Theory Seminar, Kansas State University, Feb 19 2018.
- Index to sequences related to truncating digits of squares.
Crossrefs
Programs
-
Maple
count:= 1: A[1]:= 0: for n from 0 while count < 35 do for t in [1,4,6,9] do if issqr(10*n^2+t) then count:= count+1; A[count]:= 10*n^2+t; fi od od: seq(A[i],i=1..count); # Robert Israel, Sep 28 2014
-
Mathematica
fQ[n_] := IntegerQ@ Sqrt@ Quotient[n^2, 10]; Select[ Range@ 1000000, fQ]^2 (* Robert G. Wilson v, Jan 15 2011 *)
-
PARI
for(n=0,1e7, issquare(n^2\10) & print1(n^2",")) \\ M. F. Hasler, Jan 16 2012
Formula
Appears to satisfy a(n)=1444*a(n-7)+a(n-14)-76*sqrt(a(n-7)*a(n-14)) for n >= 16. For n = 15, 14, 13, ... this would require a(1) = 16, a(0) = 49, a(-1) = 169, ... - Henry Bottomley, May 08 2001; edited by Robert Israel, Sep 28 2014
a(n) = A031149(n)^2. - M. F. Hasler, Sep 28 2014
Conjectures from Colin Barker, Dec 31 2017: (Start)
G.f.: x^2*(1 + 4*x + 9*x^2 + 16*x^3 + 49*x^4 + 169*x^5 + 256*x^6 - 1082*x^7 - 4328*x^8 - 9738*x^9 - 4592*x^10 - 6698*x^11 - 6698*x^12 - 4592*x^13 + 361*x^14 + 1444*x^15 + 3249*x^16 + 256*x^17 + 169*x^18 + 49*x^19 + 16*x^20) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 1442*x^7 + x^14)).
a(n) = 1443*a(n-7) - 1443*a(n-14) + a(n-21) for n>22.
(End)
Extensions
More terms from M. F. Hasler, Jan 16 2012
Comments