A023163 Numbers k such that Fibonacci(k) == -2 (mod k).
1, 9, 39, 111, 129, 159, 201, 249, 321, 471, 489, 519, 591, 681, 831, 849, 879, 921, 951, 1041, 1119, 1191, 1329, 1401, 1569, 1641, 1671, 1689, 1761, 1839, 1929, 1959, 2031, 2049, 2199, 2271, 2319, 2361, 2391, 2481, 2559, 2631, 2649, 2721, 2841, 2991, 3039
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000045.
Programs
-
Maple
fpp:= n -> mpow(n-1,n)[2,2]: M:= <<0,1>|<1,1>>: mpow:= proc(n,p) if n = 0 then <<1,0>|<0,1>> elif n::even then procname(n/2,p)^2 mod p else procname((n-1)/2,p)^2 . M mod p fi end proc: select(p -> fpp(p)+2 mod p = 0, [1, seq(i,i=3..10000,3)]); # Robert Israel, Feb 01 2017
-
Mathematica
Join[{1}, Position[Mod[Fibonacci[#], #]-#& /@ Range[10000], -2] // Flatten] (* Jean-François Alcover, Jun 09 2020 *)
-
PARI
isok(k) = Mod(fibonacci(k), k) == -2; \\ Michel Marcus, Jun 09 2020