cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023164 Numbers k such that Fibonacci(k) == -3 (mod k).

Original entry on oeis.org

1, 2, 8, 68, 92, 188, 212, 332, 428, 452, 548, 668, 692, 788, 908, 932, 1028, 1052, 1172, 1268, 1292, 1388, 1412, 1508, 1532, 1772, 1868, 2012, 2074, 2156, 2228, 2252, 2314, 2348, 2372, 2468, 2588, 2612, 2708, 2732, 2972, 3092, 3188, 3308, 3428, 3452, 3548
Offset: 1

Views

Author

Keywords

Comments

Includes 4*p for primes p with p == 17 or 23 (mod 30). - Robert Israel, May 11 2021

Crossrefs

Programs

  • Maple
    fpp:= n -> mpow(n-1, n)[2, 2]:
    M:= <<0, 1>|<1, 1>>:
    mpow:= proc(n, p)
      if n = 0 then <<1, 0>|<0, 1>>
      elif n::even then procname(n/2, p)^2 mod p
      else  procname((n-1)/2, p)^2 . M mod p
      fi
    end proc:
    select(t -> fpp(t)+3 mod t = 0, [$1..10000]); # Robert Israel, May 11 2021
  • Mathematica
    Select[Range[3600],Mod[Fibonacci[#]+3,#]==0&] (* Harvey P. Dale, Sep 21 2021 *)

Extensions

Definition clarified by N. J. A. Sloane, Sep 21 2021