A023164 Numbers k such that Fibonacci(k) == -3 (mod k).
1, 2, 8, 68, 92, 188, 212, 332, 428, 452, 548, 668, 692, 788, 908, 932, 1028, 1052, 1172, 1268, 1292, 1388, 1412, 1508, 1532, 1772, 1868, 2012, 2074, 2156, 2228, 2252, 2314, 2348, 2372, 2468, 2588, 2612, 2708, 2732, 2972, 3092, 3188, 3308, 3428, 3452, 3548
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..2000
Programs
-
Maple
fpp:= n -> mpow(n-1, n)[2, 2]: M:= <<0, 1>|<1, 1>>: mpow:= proc(n, p) if n = 0 then <<1, 0>|<0, 1>> elif n::even then procname(n/2, p)^2 mod p else procname((n-1)/2, p)^2 . M mod p fi end proc: select(t -> fpp(t)+3 mod t = 0, [$1..10000]); # Robert Israel, May 11 2021
-
Mathematica
Select[Range[3600],Mod[Fibonacci[#]+3,#]==0&] (* Harvey P. Dale, Sep 21 2021 *)
Extensions
Definition clarified by N. J. A. Sloane, Sep 21 2021
Comments