cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023358 Number of compositions into sums of cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 120, 150, 187, 232, 286, 351, 430, 527, 649, 802, 993, 1230, 1522, 1880, 2318, 2854, 3514, 4330, 5341, 6594, 8145, 10061, 12423, 15330, 18908, 23316, 28753, 35467, 43762, 54010, 66665, 82281, 101540, 125286, 154566, 190682
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          `if`(n<0, 0, add(a(n-i^3), i=1..iroot(n, 3))))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 08 2014
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, If[n<0, 0, Sum[a[n-i^3], {i, 1, Floor[n^(1/3)]}]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
  • PARI
    E=6; N=E^3-1; q='q+O('q^N);
    gf=1/(1 - sum(n=1,E, q^(n^3) ) );  \\ test, several similar seqs.
    v=Vec(gf) \\ Joerg Arndt, Mar 30 2014

Formula

G.f.: 1 / (1 - Sum_{n>=1} x^(n^3) ). - Joerg Arndt, Mar 30 2014
a(n) ~ c * d^n, where d = 1.2338881403372741887535479..., c = 0.418031200641837887398653... - Vaclav Kotesovec, May 01 2014