A023358 Number of compositions into sums of cubes.
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 120, 150, 187, 232, 286, 351, 430, 527, 649, 802, 993, 1230, 1522, 1880, 2318, 2854, 3514, 4330, 5341, 6594, 8145, 10061, 12423, 15330, 18908, 23316, 28753, 35467, 43762, 54010, 66665, 82281, 101540, 125286, 154566, 190682
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from T. D. Noe)
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, `if`(n<0, 0, add(a(n-i^3), i=1..iroot(n, 3)))) end: seq(a(n), n=0..80); # Alois P. Heinz, Sep 08 2014
-
Mathematica
a[n_] := a[n] = If[n==0, 1, If[n<0, 0, Sum[a[n-i^3], {i, 1, Floor[n^(1/3)]}]]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 08 2015, after Alois P. Heinz *)
-
PARI
E=6; N=E^3-1; q='q+O('q^N); gf=1/(1 - sum(n=1,E, q^(n^3) ) ); \\ test, several similar seqs. v=Vec(gf) \\ Joerg Arndt, Mar 30 2014
Formula
G.f.: 1 / (1 - Sum_{n>=1} x^(n^3) ). - Joerg Arndt, Mar 30 2014
a(n) ~ c * d^n, where d = 1.2338881403372741887535479..., c = 0.418031200641837887398653... - Vaclav Kotesovec, May 01 2014