A023565 Convolution of A023531 and A023533.
0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 1, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 3, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023531:= func< n | IsIntegral((Sqrt(8*n+9) - 3)/2) select 1 else 0 >; A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[A023533(k)*A023531(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 16 2022
-
Mathematica
A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 1, 0]; A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1]; A023565[n_]:= A023565[n]= Sum[A023533[k]*A023531[n-k+1], {k,n}]; Table[A023565[n], {n,100}] (* G. C. Greubel, Jul 16 2022 *)
-
SageMath
@CachedFunction def A023531(n): return 1 if ((sqrt(8*n+9) -3)/2).is_integer() else 0 @CachedFunction def A023533(n): return 0 if binomial( floor((6*n-1)^(1/3)) +2, 3)!=n else 1 [sum(A023533(k)*A023531(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 16 2022