cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023604 Convolution of A023532 and A023533.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 2, 1, 1, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 3, 3, 4, 2, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 4, 3, 5, 5, 5, 4, 3, 5, 4, 4, 4, 5, 5, 5, 5, 4, 2, 5, 6, 4, 6, 6, 5, 5, 6, 4, 5, 5, 6, 6, 5, 4, 6, 6, 6, 5, 5, 5, 6, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 7, 5, 7, 5
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023532:= func< n | IsIntegral((Sqrt(8*n+9) - 3)/2) select 0 else 1 >;
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[A023533(k)*A023532(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 16 2022
    
  • Mathematica
    A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
    A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 1, 0];
    A023604[n_]:= A023604[n]= Sum[A023533[k]*(1-A023531[n-k+1]), {k,n}];
    Table[A023604[n], {n,100}] (* G. C. Greubel, Jul 16 2022 *)
  • SageMath
    def A023532(n): return 0 if ((sqrt(8*n+9) -3)/2).is_integer() else 1
    @CachedFunction
    def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1
    [sum(A023533(k)*A023532(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 16 2022

Formula

From G. C. Greubel, Jul 16 2022: (Start)
a(n) = Sum_{j=1..n} A023532(n-j+1) * A023533(j).
a(n) = Sum_{j=1..n} (1 - A023531(n-j+1)) * A023533(j). (End)