A023604 Convolution of A023532 and A023533.
1, 0, 1, 2, 0, 2, 2, 1, 1, 3, 2, 2, 3, 1, 3, 3, 2, 2, 3, 3, 3, 4, 2, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 4, 3, 5, 5, 5, 4, 3, 5, 4, 4, 4, 5, 5, 5, 5, 4, 2, 5, 6, 4, 6, 6, 5, 5, 6, 4, 5, 5, 6, 6, 5, 4, 6, 6, 6, 5, 5, 5, 6, 5, 5, 6, 5, 6, 5, 6, 6, 6, 6, 7, 5, 7, 5
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023532:= func< n | IsIntegral((Sqrt(8*n+9) - 3)/2) select 0 else 1 >; A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[A023533(k)*A023532(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 16 2022
-
Mathematica
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1]; A023531[n_]:= If[IntegerQ[(Sqrt[8*n+9] -3)/2], 1, 0]; A023604[n_]:= A023604[n]= Sum[A023533[k]*(1-A023531[n-k+1]), {k,n}]; Table[A023604[n], {n,100}] (* G. C. Greubel, Jul 16 2022 *)
-
SageMath
def A023532(n): return 0 if ((sqrt(8*n+9) -3)/2).is_integer() else 1 @CachedFunction def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1 [sum(A023533(k)*A023532(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 16 2022
Formula
From G. C. Greubel, Jul 16 2022: (Start)