cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023623 Convolution of Lucas numbers and A023533.

Original entry on oeis.org

1, 3, 4, 8, 14, 22, 36, 58, 94, 153, 249, 402, 651, 1053, 1704, 2757, 4461, 7218, 11679, 18898, 30579, 49477, 80056, 129533, 209589, 339122, 548711, 887833, 1436544, 2324377, 3760921, 6085298, 9846219
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Lucas(k)*A023533(n+2-k): k in [1..n+1]]): n in [0..50]]; // G. C. Greubel, Jul 16 2022
    
  • Mathematica
    Table[Sum[LucasL[m+2-Binomial[j+3,3]], {j,0,n}], {n,0,5}, {m, Binomial[n+3,3] -1, Binomial[n+4,3] -2}]//Flatten (* G. C. Greubel, Jul 16 2022 *)
  • SageMath
    def A023623(n, k): return sum(lucas_number2(k-binomial(j+3,3),1,-1) for j in (0..n))
    flatten([[A023623(n, k) for k in (binomial(n+3,3)+1..binomial(n+4,3))] for n in (0..5)]) # G. C. Greubel, Jul 16 2022

Formula

a(n) = Sum_{j=1..n+1} LucasL(j) * A023533(n-j+1). - G. C. Greubel, Jul 16 2022