A023623 Convolution of Lucas numbers and A023533.
1, 3, 4, 8, 14, 22, 36, 58, 94, 153, 249, 402, 651, 1053, 1704, 2757, 4461, 7218, 11679, 18898, 30579, 49477, 80056, 129533, 209589, 339122, 548711, 887833, 1436544, 2324377, 3760921, 6085298, 9846219
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..4700
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[Lucas(k)*A023533(n+2-k): k in [1..n+1]]): n in [0..50]]; // G. C. Greubel, Jul 16 2022
-
Mathematica
Table[Sum[LucasL[m+2-Binomial[j+3,3]], {j,0,n}], {n,0,5}, {m, Binomial[n+3,3] -1, Binomial[n+4,3] -2}]//Flatten (* G. C. Greubel, Jul 16 2022 *)
-
SageMath
def A023623(n, k): return sum(lucas_number2(k-binomial(j+3,3),1,-1) for j in (0..n)) flatten([[A023623(n, k) for k in (binomial(n+3,3)+1..binomial(n+4,3))] for n in (0..5)]) # G. C. Greubel, Jul 16 2022
Formula
a(n) = Sum_{j=1..n+1} LucasL(j) * A023533(n-j+1). - G. C. Greubel, Jul 16 2022