cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023660 Convolution of odd numbers and A023533.

Original entry on oeis.org

1, 3, 5, 8, 12, 16, 20, 24, 28, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[(2*k+1)*A023533(n-k): k in [0..n-1]]): n in [1..80]]; // G. C. Greubel, Jul 17 2022
    
  • Mathematica
    Table[(2*k+1)*n + 6*Binomial[n+2,4], {n, 7}, {k,0,n*(n+3)/2}]//Flatten (* G. C. Greubel, Jul 17 2022 *)
  • SageMath
    def A023660(n, k): return (2*k+1)*n + 6*binomial(n+2, 4)
    flatten([[A023660(n,k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 17 2022

Formula

From G. C. Greubel, Jul 17 2022: (Start)
a(n) = Sum_{j=0..n-1} (2*j+1)*A023533(n-j).
a(n) = 2*A023543(n-1) + A056556(n).
T(n, k) = (2*k+1)*n + 6*binomial(n+2, 4), for 0 <= k <= n*(n+3)/2 and n >= 1 (as an irregular triangle). (End)