A023660 Convolution of odd numbers and A023533.
1, 3, 5, 8, 12, 16, 20, 24, 28, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[(2*k+1)*A023533(n-k): k in [0..n-1]]): n in [1..80]]; // G. C. Greubel, Jul 17 2022
-
Mathematica
Table[(2*k+1)*n + 6*Binomial[n+2,4], {n, 7}, {k,0,n*(n+3)/2}]//Flatten (* G. C. Greubel, Jul 17 2022 *)
-
SageMath
def A023660(n, k): return (2*k+1)*n + 6*binomial(n+2, 4) flatten([[A023660(n,k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 17 2022
Formula
From G. C. Greubel, Jul 17 2022: (Start)
a(n) = Sum_{j=0..n-1} (2*j+1)*A023533(n-j).
T(n, k) = (2*k+1)*n + 6*binomial(n+2, 4), for 0 <= k <= n*(n+3)/2 and n >= 1 (as an irregular triangle). (End)