cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023662 Convolution of odd numbers and primes.

Original entry on oeis.org

2, 9, 24, 51, 96, 165, 264, 399, 576, 805, 1094, 1451, 1886, 2405, 3014, 3723, 4544, 5485, 6554, 7761, 9112, 10615, 12280, 14117, 16140, 18361, 20786, 23421, 26272, 29345, 32658, 36229, 40068, 44183, 48586, 53289, 58300, 63631, 69292
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000040, A005408, A061802 (first differences).

Programs

  • Maple
    A023662 := proc(n)
        add( ithprime(n-i)*(2*i+1),i=0..n-1) ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[Sum[Prime[n - k + 1] (2 k - 1), {k, n}], {n, 39}] (* Michael De Vlieger, Nov 29 2015 *)
  • PARI
    a(n) = sum(i=1, n, prime(n-i+1)*(2*i-1)); \\ Michel Marcus, Sep 30 2013

Formula

a(n) = Sum_{i=0..n-1} A000040(n-i)*A005408(i). - R. J. Mathar, Nov 29 2015
a(n) = Sum_{i=0..n-1} A061802(i). - Marco Zárate, Jun 09 2024
From Ridouane Oudra, Feb 19 2025: (Start)
a(n) = Sum_{i=1..n} Sum_{j=1..n} min(prime(i), prime(j)).
a(n) = A167214(n) - A062020(n).
a(n) = 2*A167214(n) - A316322(n).
a(n) = A014148(n) + A014148(n-1).
a(n) = A007504(n) + 2*A014148(n-1). (End)