A023665 Convolution of A000201 and A023533.
1, 3, 4, 7, 11, 13, 17, 20, 23, 28, 32, 37, 43, 47, 52, 57, 61, 67, 71, 77, 84, 90, 97, 103, 109, 117, 122, 129, 136, 141, 149, 155, 161, 169, 175, 184, 192, 199, 209, 215, 224, 232, 240, 249, 256, 264, 274, 280, 289, 297, 304, 314, 321, 329, 337
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[Floor(k*(1+Sqrt(5))/2)*A023533(n-k+1): k in [1..n]]): n in [1..80]]; // G. C. Greubel, Jul 18 2022
-
Mathematica
Table[Sum[Floor[(k+1 +Binomial[n+2,3] -Binomial[j+2,3])*GoldenRatio], {j,n}], {n, 7}, {k,0,n*(n+3)/2}] (* G. C. Greubel, Jul 18 2022 *)
-
SageMath
def A023665(n, k): return sum( floor((k+1 + binomial(n+2,3) - binomial(j+2,3))*golden_ratio) for j in (1..n) ) flatten([[A023665(n,k) for k in (0..n*(n+3)/2)] for n in (1..7)]) # G. C. Greubel, Jul 18 2022
Formula
T(n, k) = Sum_{j=1..n} A000201(k+1 +binomial(n+2,3) -binomial(j+2,3)), for 0 <= k <= n*(n+3)/2, n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022