A023670 Convolution of A023533 with itself.
1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A023533.
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[A023533(k)*A023533(n-k+1): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 14 2022
-
Mathematica
A023533[n_]:= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1]; A023670[n_]:= Sum[A023533[k]*A023533[n+1-k], {k, n}]; Table[A023670[n], {n, 100}] (* G. C. Greubel, Jul 14 2022 *)
-
SageMath
def A023533(n): if binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n: return 0 else: return 1 [sum(A023533(k)*A023533(n-k+1) for k in (1..n)) for n in (1..100)] # G. C. Greubel, Jul 14 2022