A023672 Convolution of A023533 and primes.
2, 3, 5, 9, 14, 18, 24, 30, 36, 48, 53, 65, 77, 85, 97, 111, 121, 131, 149, 163, 174, 192, 204, 220, 242, 260, 272, 294, 310, 320, 350, 364, 382, 410, 436, 453, 469, 495, 513, 543, 569, 587, 615, 647, 661, 687, 715, 739, 759, 799, 827, 855, 869
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >; [(&+[NthPrime(k)*A023533(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 18 2022
-
Mathematica
A023672[n_, m_]:= A023672[n, m]= Sum[Prime[(m +Binomial[n+2,3] -Binomial[j+2, 3])], {j, n}]; Table[A023672[n, m], {n,10}, {m,Binomial[n+2,2]}]//Flatten (* G. C. Greubel, Jul 18 2022 *)
-
SageMath
def A023672(n,k): return sum(nth_prime(k +binomial(n+2,3) -binomial(j+2,3)) for j in (1..n)) flatten([[A023672(n,k) for k in (1..binomial(n+2,2))] for n in (1..10)]) # G. C. Greubel, Jul 18 2022
Formula
a(n) = Sum_{j=1..n} A000040(k + binomial(n+3, 3) - binomial(j+2, 3)), for 1 <= k <= binomial(n+2, 2), n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022