cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023672 Convolution of A023533 and primes.

Original entry on oeis.org

2, 3, 5, 9, 14, 18, 24, 30, 36, 48, 53, 65, 77, 85, 97, 111, 121, 131, 149, 163, 174, 192, 204, 220, 242, 260, 272, 294, 310, 320, 350, 364, 382, 410, 436, 453, 469, 495, 513, 543, 569, 587, 615, 647, 661, 687, 715, 739, 759, 799, 827, 855, 869
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[NthPrime(k)*A023533(n+1-k): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 18 2022
    
  • Mathematica
    A023672[n_, m_]:= A023672[n, m]= Sum[Prime[(m +Binomial[n+2,3] -Binomial[j+2, 3])], {j, n}];
    Table[A023672[n, m], {n,10}, {m,Binomial[n+2,2]}]//Flatten (* G. C. Greubel, Jul 18 2022 *)
  • SageMath
    def A023672(n,k): return sum(nth_prime(k +binomial(n+2,3) -binomial(j+2,3)) for j in (1..n))
    flatten([[A023672(n,k) for k in (1..binomial(n+2,2))] for n in (1..10)]) # G. C. Greubel, Jul 18 2022

Formula

a(n) = Sum_{j=1..n} A000040(j) * A023533(n-j+1).
a(n) = Sum_{j=1..n} A000040(k + binomial(n+3, 3) - binomial(j+2, 3)), for 1 <= k <= binomial(n+2, 2), n >= 1 (as an irregular triangle). - G. C. Greubel, Jul 18 2022