A329295
Numbers whose digits are in nondecreasing order in bases 5 and 6.
Original entry on oeis.org
0, 1, 2, 3, 4, 7, 8, 9, 14, 43, 44, 64, 93, 94, 784, 1562, 1563, 1564, 1569, 1599, 3124, 9374
Offset: 1
a(1) = 0 = 0_5 = 0_6
a(2) = 1 = 1_5 = 1_6
a(3) = 2 = 2_5 = 2_6
a(4) = 3 = 3_5 = 3_6
a(5) = 4 = 4_5 = 4_6
a(6) = 7 = 12_5 = 11_6
a(7) = 8 = 13_5 = 12_6
a(8) = 9 = 14_5 = 13_6
a(9) = 14 = 24_5 = 22_6
a(10) = 43 = 133_5 = 111_6
a(11) = 44 = 134_5 = 112_6
a(12) = 64 = 224_5 = 144_6
a(13) = 93 = 333_5 = 233_6
a(14) = 94 = 334_5 = 234_6
a(15) = 784 = 11114_5 = 3344_6
a(16) = 1562 = 22222_5 = 11122_6
a(17) = 1563 = 22223_5 = 11123_6
a(18) = 1564 = 22224_5 = 11124_6
a(19) = 1569 = 22234_5 = 11133_6
a(20) = 1599 = 22344_5 = 11223_6
a(21) = 3124 = 44444_5 = 22244_6
a(22) = 9374 = 244444_5 = 111222_6
Numbers whose digits are in nondecreasing order in bases b and b+1:
A329294 (b=4), this sequence (b=5),
A329296 (b=6),
A329297 (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
A329296
Numbers whose digits are in nondecreasing order in bases 6 and 7.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 57, 58, 59, 65, 89, 130, 131, 172, 173, 179, 1600, 1601, 3203
Offset: 1
a(1) = 0 = 0_6 = 0_7
a(2) = 1 = 1_6 = 1_7
a(3) = 2 = 2_6 = 2_7
a(4) = 3 = 3_6 = 3_7
a(5) = 4 = 4_6 = 4_7
a(6) = 5 = 5_6 = 5_7
a(7) = 8 = 12_6 = 11_7
a(8) = 9 = 13_6 = 12_7
a(9) = 10 = 14_6 = 13_7
a(10) = 11 = 15_6 = 14_7
a(11) = 16 = 24_6 = 22_7
a(12) = 17 = 25_6 = 23_7
a(13) = 57 = 133_6 = 111_7
a(14) = 58 = 134_6 = 112_7
a(15) = 59 = 135_6 = 113_7
a(16) = 65 = 145_6 = 122_7
a(17) = 89 = 225_6 = 155_7
a(18) = 130 = 334_6 = 244_7
a(19) = 131 = 335_6 = 245_7
a(20) = 172 = 444_6 = 334_7
a(21) = 173 = 445_6 = 335_7
a(22) = 179 = 455_6 = 344_7
a(23) = 1600 = 11224_6 = 4444_7
a(24) = 1601 = 11225_6 = 4445_7
a(25) = 3203 = 22455_6 = 12224_7
Intersection of
A023748 (base 6) and
A023749 (base 7). Numbers whose digits are in nondecreasing order in bases b and b+1:
A329294 (b=4),
A329295 (b=5), this sequence (b=6),
A329297 (b=7),
A329298 (b=8),
A329299 (b=9). See
A329300 for the (apparently) largest term of each of these sequences.
Showing 1-2 of 2 results.
Comments