A023897 a(n) = sigma_1(k) / phi(k) where k = A020492(n) is the n-th balanced number.
1, 3, 2, 6, 7, 4, 3, 9, 2, 8, 5, 6, 7, 4, 7, 10, 5, 12, 4, 9, 10, 3, 4, 14, 10, 8, 6, 13, 9, 8, 5, 15, 7, 2, 6, 8, 4, 5, 12, 6, 7, 10, 10, 11, 14, 12, 9, 4, 3, 4, 12, 9, 4, 4, 7, 5, 7, 10, 3, 5, 4, 13, 14, 12, 10, 9, 10, 8, 7, 4, 8, 6, 18, 9, 3, 8, 13, 8, 15, 15, 8, 3, 14, 9, 10, 8, 8, 10, 5, 7, 8, 11, 6, 11, 13, 6
Offset: 1
Keywords
Links
- Jud McCranie, Table of n, a(n) for n = 1..10000 (first 800 terms from Vincenzo Librandi)
Programs
-
Magma
[ q: n in [1..20000] | r eq 0 where q, r is Quotrem(SumOfDivisors(n), EulerPhi(n)) ]; // Klaus Brockhaus, Nov 09 2008
-
Mathematica
Select[ Array[ DivisorSigma[ 1, # ]/EulerPhi[ # ]&, 20000 ], IntegerQ ]
-
PARI
s(n) = {my(f = factor(n)); sigma(f)/eulerphi(f);} list(lim) = select(x -> denominator(x) == 1, vector(lim, i, s(i))); \\ Amiram Eldar, Dec 25 2024
-
Python
from math import prod from itertools import count, islice from sympy import factorint def A023897_gen(startvalue=1): # generator of terms >= startvalue for m in count(max(startvalue,1)): f = factorint(m) q, r = divmod(prod(p**(e+2)-p for p,e in f.items()),m*prod((p-1)**2 for p in f)) if not r: yield q A023897_list = list(islice(A023897_gen(),20)) # Chai Wah Wu, Aug 12 2024
Comments