cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023917 Theta series of A*_5 lattice.

Original entry on oeis.org

1, 0, 0, 0, 0, 12, 0, 0, 30, 20, 0, 0, 30, 0, 0, 0, 0, 120, 0, 0, 132, 60, 0, 0, 90, 0, 0, 0, 0, 180, 0, 0, 270, 180, 0, 0, 140, 0, 0, 0, 0, 480, 0, 0, 420, 132, 0, 0, 270, 0, 0, 0, 0, 420, 0, 0, 600, 420, 0, 0, 360, 0, 0, 0, 0, 960, 0, 0, 840, 360, 0, 0, 330, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Expansion of Ahlgren's F_6(q^2).

Examples

			1 + 12*q^5 + 30*q^8 + 20*q^9 + 30*q^12 + 120*q^17 + 132*q^20 + 60*q^21 + 90*q^24 + 180*q^29 + 270*q^32 + 180*q^33 + 140*q^36 + 480*q^41 + 420*q^44 + 132*q^45 + 270*q^48 + 420*q^53 + 600*q^56 + 420*q^57 + 360*q^60 + O(q^61)
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Programs

  • Magma
    L:=Lattice("A",5); D:=Dual(L); T1 := ThetaSeries(D,120);
  • Mathematica
    terms = 77; phi[q_] := EllipticTheta[3, 0, q]; F6[q_] := (1/32)*(-3*phi[Sqrt[q]]^5 + 5*phi[Sqrt[q]]^3*phi[Sqrt[q^3]]^2 + 15*phi[Sqrt[q]] * phi[Sqrt[q^3]]^4 + (15*phi[Sqrt[q^3]]^6)/phi[Sqrt[q]]); s = Simplify[F6[q^2], q>0]; s = s + O[q]^(2 terms); CoefficientList[s, q][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017 *)