cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072837 Duplicate of A023917.

Original entry on oeis.org

1, 0, 0, 0, 0, 12, 0, 0, 30, 20, 0, 0, 30, 0, 0, 0, 0, 120, 0, 0, 132, 60, 0, 0, 90, 0, 0, 0, 0, 180
Offset: 0

Views

Author

Keywords

A072833 Numbers that are congruent to 0, 5, 8, 9 mod 12.

Original entry on oeis.org

0, 5, 8, 9, 12, 17, 20, 21, 24, 29, 32, 33, 36, 41, 44, 45, 48, 53, 56, 57, 60, 65, 68, 69, 72, 77, 80, 81, 84, 89, 92, 93, 96, 101, 104, 105, 108, 113, 116, 117, 120, 125, 128, 129, 132, 137, 140, 141, 144, 149, 152, 153, 156, 161, 164, 165, 168, 173, 176, 177, 180, 185, 188, 189
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

The exponents occurring in the expansion of F_6(q^2) (see Ahlgren) or, equivalently, the norms of the vectors in the A*5 lattice. - _Andrey Zabolotskiy, Oct 26 2024

Crossrefs

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[6, q_]:= ( -3*f[q, q]^5 + 5*f[q, q]^3*f[q^3, q^3]^2 + 15*f[q, q]*f[q^3, q^3]^4 + 15*f[q^3, q^3]^6/f[q, q]  )/32; cfs = CoefficientList[Series[F[6, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)
    Flatten[#+{0,5,8,9}&/@(12*Range[0,20])] (* Harvey P. Dale, Apr 10 2022 *)

Formula

G.f.: x*(3*x^2-2*x+5) / ((x-1)^2*(x^2+1)). - Colin Barker, Jul 31 2013
Sum_{n>=1} 1/a(n) = Pi*(3-2*sqrt(3))/72 + log(2)/2 - arccoth(sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Jul 26 2024
E.g.f.: exp(x)*(1 + 3*x) - cos(x) + sin(x). - Stefano Spezia, Oct 27 2024

Extensions

Terms a(33) onward added by G. C. Greubel, Apr 16 2018
Edited by Andrey Zabolotskiy, Aug 14 2020

A125564 Theta series of 5-dimensional lattice A_5^{+3}.

Original entry on oeis.org

1, 0, 30, 30, 0, 132, 90, 0, 270, 140, 0, 420, 270, 0, 600, 360, 0, 840, 330, 0, 1092, 660, 0, 1200, 810, 0, 1500, 570, 0, 1980, 1020, 0, 2190, 1260, 0, 2280, 1100, 0, 2460, 1560, 0, 3360, 1620, 0, 3780, 1452, 0, 3360, 2190, 0, 3930, 2340, 0, 4620, 1710, 0, 5400, 2940
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2007

Keywords

Examples

			1 + 30*q^4 + 30*q^6 + 132*q^10 + 90*q^12 + 270*q^16 + 140*q^18 + 420*q^22 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 110 and 116.

Crossrefs

Programs

  • Mathematica
    al[n_, l_, p_, nn_] := Sum[Exp[-2 Pi I k l/n] EllipticTheta[3, Pi k/n, q^p]^n, {k, n}] / n / Sum[q^(p n (m + l/n)^2), {m, -nn, nn}] + O[q]^nn;
    as[n_, s_, nn_] := CoefficientList[FullSimplify[Normal@Sum[al[n, l, n/s, nn], {l, s, n, s}]], q];
    as[6, 1, 30] (*A023917*)
    as[6, 2, 30][[;; ;; 2]] (*this sequence*)
    as[6, 3, 30] (*A125561*)
    (* Andrey Zabolotskiy, Feb 17 2022 *)

Extensions

Typo in name corrected by Andrey Zabolotskiy, Feb 16 2022

A023918 Theta series of A*_6 lattice.

Original entry on oeis.org

1, 0, 0, 14, 0, 42, 70, 42, 0, 0, 210, 0, 294, 294, 210, 0, 0, 504, 0, 630, 882, 350, 0, 0, 1190, 0, 1470, 1148, 882, 0, 0, 1680, 0, 1708, 2520, 1050, 0, 0, 3150, 0, 3570, 2940, 1750, 0, 0, 3066, 0, 3864, 4774, 2100, 0, 0, 6174, 0, 5740, 5124, 3570, 0, 0, 6090
Offset: 0

Views

Author

Keywords

Comments

Positions of nonzero entries seem to be A047328. - Andrey Zabolotskiy, Nov 10 2021

Examples

			1 + 14*x^3 + 42*x^5 + 70*x^6 + 42*x^7 + 210*x^10 + 294*x^12 + 294*x^13 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 114.

Crossrefs

Cf. A008446.
Cf. theta series of lattices A*_0, A*_1, A*_2, A*_3, A*_4...: A000007, A000122, A004016, A004013, A023916, A023917, this sequence, A023919-A023936.
Cf. A047328.

Programs

  • Mathematica
    a[n_] := Module[{A, A7}, A = x*O[x]^n; A7 = QPochhammer[x^7 + A]; A = QPochhammer[x + A]; SeriesCoefficient[A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from Michael Somos's PARI script *)
  • PARI
    {a(n) = local(A, A7); if( n<0, 0, A = x * O(x^n); A7 = eta(x^7 + A); A = eta(x + A); polcoeff( A^7 / A7 + 7 * x * (A * A7)^3 + 7 * x^2 * A7^7 / A, n))}; /* Michael Somos, Jan 29 2011 */

Formula

Expansion of f(-x)^7 / f(-x^7) + 7 * x * f(-x)^3 * f(-x^7)^3 + 7 * x^2 * f(-x^7)^7 / f(-x) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 29 2011
a(7*n) = A008446(n). a(7*n + 1) = a(7*n + 2) = a(7*n + 4) = 0. - Michael Somos, Jan 29 2011
Showing 1-4 of 4 results.