cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108752 Numbers k such that 12 divides k*(k+1).

Original entry on oeis.org

0, 3, 8, 11, 12, 15, 20, 23, 24, 27, 32, 35, 36, 39, 44, 47, 48, 51, 56, 59, 60, 63, 68, 71, 72, 75, 80, 83, 84, 87, 92, 95, 96, 99, 104, 107, 108, 111, 116, 119, 120, 123, 128, 131, 132, 135, 140, 143, 144, 147, 152, 155, 156, 159, 164, 167, 168, 171, 176, 179, 180
Offset: 1

Views

Author

Robert Phillips (bobp(AT)usca.edu), Jun 23 2005

Keywords

Comments

First differences are 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, ..., . - Robert G. Wilson v, May 31 2017
Numbers that are congruent to {0, 3, 8, 11} mod 12. - Amiram Eldar, Jul 26 2024

Crossrefs

Programs

  • Magma
    [3*n-2-(-1)^((2*n-3-(-1)^n) div 4): n in [1..80]]; // Vincenzo Librandi, May 04 2017
  • Maple
    a:= proc(n) if is(n*(n+1)/12, integer) then n fi end: seq(a(n), n=0..200); # Emeric Deutsch, Jun 25 2005
  • Mathematica
    Select[ Range[0, 182], Mod[ #(# + 1), 12] == 0 &] (* Robert G. Wilson v, Jun 25 2005 *)
    LinearRecurrence[{2, -2, 2, -1}, {0, 3, 8, 11}, 200] (* Vincenzo Librandi, Jun 04 2017 *)

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) = A016777(n) - A057077(n).
G.f.: x*(3 + 2*x + x^2)/((1 + x^2)*(1 - x)^2). (End)
a(n) = 3*n - 2 - (-1)^((2*n-3-(-1)^n)/4). - Luce ETIENNE, Apr 04 2015
Sum_{n>=2} 1/a(n) = log(2)/2 + arccoth(sqrt(3))/(2*sqrt(3)) - Pi*(3+2*sqrt(3))/72. - Amiram Eldar, Jul 26 2024

Extensions

More terms from Robert G. Wilson v and Emeric Deutsch, Jun 25 2005

A072835 Exponents occurring in expansion of F_9(q^2).

Original entry on oeis.org

0, 8, 14, 18, 20, 26, 32, 36, 38, 44, 50, 54, 56, 62, 68, 72, 74, 80, 86, 90, 92, 98, 104, 108, 110, 116, 122, 126, 128, 134, 140, 144, 146, 152, 158, 162, 164, 170, 176, 180, 182, 188, 194, 198, 200, 206, 212, 216, 218, 224, 230, 234, 236, 242, 248, 252, 254, 260, 266, 270, 272, 278
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

Twice (A242660 without 1). Also, norms of vectors of the A*8 lattice. - _Andrey Zabolotskiy, Nov 10 2021

Crossrefs

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y];
    F[9,q_]:= f[q^9, q^9]^8 - 16*q^9*f[q^9, q^27]^8 + 256*q^18*f[q^18, q^54]^8 + 18*q^8*QPochhammer[q^18]^12/QPochhammer[q^6]^4;
    cfs = CoefficientList[Series[F[9, q], {q, 0, 500}], q];
    Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)

Formula

G.f.: -2*x*(x^4-x^3-2*x^2-3*x-4) / (x^5-x^4-x+1). - Colin Barker, Jul 31 2013
a(n+4) = a(n) + 18 for n > 0. - Jerzy R Borysowicz, Sep 02 2023
a(n)/n ~ 9/2. - Jerzy R Borysowicz, Sep 03 2023
a(n) = 2 * A056991(n+1) for n>=1. - Alois P. Heinz, Sep 03 2023

Extensions

Terms a(22) onward added by G. C. Greubel, Apr 16 2018
Showing 1-2 of 2 results.