cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072833 Numbers that are congruent to 0, 5, 8, 9 mod 12.

Original entry on oeis.org

0, 5, 8, 9, 12, 17, 20, 21, 24, 29, 32, 33, 36, 41, 44, 45, 48, 53, 56, 57, 60, 65, 68, 69, 72, 77, 80, 81, 84, 89, 92, 93, 96, 101, 104, 105, 108, 113, 116, 117, 120, 125, 128, 129, 132, 137, 140, 141, 144, 149, 152, 153, 156, 161, 164, 165, 168, 173, 176, 177, 180, 185, 188, 189
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

The exponents occurring in the expansion of F_6(q^2) (see Ahlgren) or, equivalently, the norms of the vectors in the A*5 lattice. - _Andrey Zabolotskiy, Oct 26 2024

Crossrefs

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[6, q_]:= ( -3*f[q, q]^5 + 5*f[q, q]^3*f[q^3, q^3]^2 + 15*f[q, q]*f[q^3, q^3]^4 + 15*f[q^3, q^3]^6/f[q, q]  )/32; cfs = CoefficientList[Series[F[6, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)
    Flatten[#+{0,5,8,9}&/@(12*Range[0,20])] (* Harvey P. Dale, Apr 10 2022 *)

Formula

G.f.: x*(3*x^2-2*x+5) / ((x-1)^2*(x^2+1)). - Colin Barker, Jul 31 2013
Sum_{n>=1} 1/a(n) = Pi*(3-2*sqrt(3))/72 + log(2)/2 - arccoth(sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Jul 26 2024
E.g.f.: exp(x)*(1 + 3*x) - cos(x) + sin(x). - Stefano Spezia, Oct 27 2024

Extensions

Terms a(33) onward added by G. C. Greubel, Apr 16 2018
Edited by Andrey Zabolotskiy, Aug 14 2020

A072839 Expansion of F_9(q^2).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 72, 0, 0, 0, 240, 0, 252, 0, 0, 0, 0, 0, 504, 0, 0, 0, 0, 0, 1026, 0, 0, 0, 2160, 0, 1512, 0, 0, 0, 0, 0, 2664, 0, 0, 0, 0, 0, 3528, 0, 0, 0, 6720, 0, 5616, 0, 0, 0, 0, 0, 6552, 0, 0, 0, 0, 0, 9828, 0, 0, 0, 17520, 0, 11232, 0, 0, 0, 0, 0, 16380, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

Theta series of {A_8}* lattice. - Andy Huchala, Jul 01 2021

Crossrefs

Cf. A008448 (dual), A072835.
A023920 aerated with 0's.

Programs

  • Magma
    L := Dual(Lattice("A", 8));
    T := ThetaSeries(L,32); Coefficients(T); // Andy Huchala, Jul 01 2021
  • Mathematica
    f[x_,y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[q^9, q^9]^8 - 16*q^9*f[q^9, q^27]^8 + 256*q^18*f[q^18, q^54]^8 + 18*q^8*f[q^18, -q^36]^12/f[q^6, -q^12]^4, {q, 0, 100}], q] (* G. C. Greubel, Apr 15 2018 *)
Showing 1-2 of 2 results.