cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A154293 Integers of the form t/6, where t is a triangular number (A000217).

Original entry on oeis.org

0, 1, 6, 11, 13, 20, 35, 46, 50, 63, 88, 105, 111, 130, 165, 188, 196, 221, 266, 295, 305, 336, 391, 426, 438, 475, 540, 581, 595, 638, 713, 760, 776, 825, 910, 963, 981, 1036, 1131, 1190, 1210, 1271, 1376, 1441, 1463, 1530, 1645, 1716, 1740, 1813, 1938, 2015
Offset: 1

Views

Author

Keywords

Comments

Old definition was "Integers of the form: 1/6+2/6+3/6+4/6+5/6+...".
1/6 + 2/6 + 3/6 = 1, 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 + 7/6 + 8/6 = 6, ...
a(n) is the set of all integers k such that 48k+1 is a perfect square. The square roots of 48*a(n) + 1 = 1, 7, 17, 23, 25, ... = 8*(n-floor(n/4)) + (-1)^n. - Gary Detlefs, Mar 01 2010
Conjecture: A193828 divided by 2. - Omar E. Pol, Aug 19 2011
The above conjecture is correct. - Charles R Greathouse IV, Jan 02 2012
Quasipolynomial of order 4. - Charles R Greathouse IV, Jan 02 2012
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^n/Product_{k = 1..2*n} (1 + x^k) = 1 + x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... Cf. A218171. [added Jan 21 2025: this is correct - see Berndt et al., Theorem 3.2.] - Peter Bala, Feb 04 2021
From Peter Bala, Dec 12 2024 (Start)
The sequence terms occur as exponents in the expansion of F(x)*Product_{n >= 1} (1 - x^n) = Product_{n >= 1} (1 - x^n)*(1 + x^(4*n))^2*(1 + x^(4*n-2))*(1 + x^(8*n-3))*(1 + x^(8*n-5)) = 1 - x - x^6 + x^11 + x^13 - x^20 - x^35 + x^46 + x^50 - - + + ..., where F(x) is the g.f. of A069910.
It appears that the sequence terms occur as exponents in the expansion 1/(1 - x) * ( - x^2 + Sum_{n >= 1} x^floor((3*n+1)/2) * 1/Product_{k = 1..n} (1 + x^k) ) = x^6 + x^11 - x^13 - x^20 + x^35 + x^46 - - + + .... (End)
It appears that the sequence terms occur as exponents in the expansion Sum_{n >= 0} x^(n+1)/Product_{k = 1..2*n+2} (1 + x^k) = x - x^6 - x^11 + x^13 + x^20 - x^35 - x^46 + + - - .... - Peter Bala, Jan 21 2025

Examples

			G.f. = x^2 + 6*x^3 + 11*x^4 + 13*x^5 + 20*x^6 + 35*x^7 + 46*x^8 + ...
		

Crossrefs

Programs

  • Magma
    /* By definition: */ [t/6: n in [0..160] | IsIntegral(t/6) where t is n*(n+1)/2]; // Bruno Berselli, Mar 07 2016
  • Maple
    f:=n-> 8*(n-floor(n/4))+(-1)^n:seq((f(n)^2-1)/48,n=0..51); # Gary Detlefs, Mar 01 2010
  • Mathematica
    lst={}; s=0; Do[s+=n/6; If[Floor[s]==s, AppendTo[lst, s]], {n, 0, 7!}]; lst (* Orlovsky *)
    Join[{0}, Select[Table[Plus@@Range[n]/6, {n, 200}], IntegerQ]] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,1,6,11,13,20,35},60] (* Charles R Greathouse IV, Jan 20 2012 *)
    a[ n_] := (3 n^2 + If[ OddQ[ Quotient[ n + 1, 2]], -5 n + 2, -n]) / 4; (* Michael Somos, Feb 10 2015 *)
    a[ n_] := Module[{m = n}, If[ n < 1, m = 1 - n]; SeriesCoefficient[ x^2 (1 + 4 x + x^2) (1 - x^2) (1 - x^6) / ((1 - x)^2 (1 - x^3) (1 - x^4)^2), {x, 0, m}]]; (* Michael Somos, Feb 10 2015 *)
  • PARI
    a(n)=n--;(8*(n-n\4)+(-1)^n)^2\48 \\ Charles R Greathouse IV, Jan 02 2012
    
  • PARI
    {a(n) = (3*n^2 + if( (n+1)\2%2, -5*n+2,-n)) / 4}; /* Michael Somos, Feb 10 2015 */
    
  • PARI
    {a(n) = if( n<1, n = 1-n); polcoeff( x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2) + x * O(x^n), n)}; /* Michael Somos, Feb 10 2015 */
    

Formula

From R. J. Mathar, Jan 07 2009: (Start)
a(n) = A000217(A108752(n))/6.
G.f.: x^2*(x^2-x+1)*(x^2+4*x+1)/((1+x^2)^2*(1-x)^3) (conjectured). (End)
The conjectured g.f. is correct. - Charles R Greathouse IV, Jan 02 2012
a(n) = (f(n)^2-1)/48 where f(n) = 8*(n-floor(n/4))+(-1)^n, with offset 0, a(0)=0. - Gary Detlefs, Mar 01 2010
a(n) = a(1-n) for all n in Z. - Michael Somos, Oct 27 2012
G.f.: x^2 * (1 + 4*x + x^2) * (1 - x^2) * (1 - x^6) / ((1 - x)^2 * (1 - x^3) * (1 - x^4)^2). - Michael Somos, Feb 10 2015
Sum_{n>=2} 1/a(n) = 12 - (1+4/sqrt(3))*Pi. - Amiram Eldar, Mar 18 2022
a(n) = A069497(n)/6. - Hugo Pfoertner, Nov 19 2024
From Peter Bala, Jan 21 2025: (Start)
a(4*n) = 12*n^2 - n; a(4*n+1) = 12*n^2 + n;
a(4*n+2) = (3*n + 1)*(4*n + 1) = A033577(n); a(4*n+3) = (3*n + 2)*(4*n + 3) = A033578(n+1).
Let T(n) = n*(n + 1)/2 denote the n-th triangular number. Then
a(4*n) = (1/6) * T(12*n-1); a(4*n+1) = (1/6) * T(12*n);
a(4*n+2) = (1/6) * T(12*n+3); a(4*n+3) = (1/6) * T(12*n+8). (End)

Extensions

Definition rewritten by M. F. Hasler, Dec 31 2012

A069497 Triangular numbers of the form 6*k.

Original entry on oeis.org

0, 6, 36, 66, 78, 120, 210, 276, 300, 378, 528, 630, 666, 780, 990, 1128, 1176, 1326, 1596, 1770, 1830, 2016, 2346, 2556, 2628, 2850, 3240, 3486, 3570, 3828, 4278, 4560, 4656, 4950, 5460, 5778, 5886, 6216, 6786, 7140, 7260, 7626, 8256, 8646, 8778, 9180
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Crossrefs

Programs

  • Maple
    a[0] := 0:a[1] := 3:a[2] := 8:a[3] := 11:seq((12*(floor(i/4))+a[i mod 4])*(12*(floor(i/4))+a[i mod 4]+1)/2,i=0..100);
  • Mathematica
    CoefficientList[ Series[ 6x (x^2 -x +1) (x^2 +4x +1)/((x^2 +1)^2*(1 -x)^3), {x, 0, 45}], x] (* or *)
    LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {0, 6, 36, 66, 78, 120, 210}, 46] (* Robert G. Wilson v, May 31 2017 *)
    Select[Accumulate[Range[0, 89]], Divisible[#, 6] &] (* Alonso del Arte, May 31 2017 *)

Formula

a(n) = 6 * A154293(n). - Joerg Arndt, Aug 18 2022
a(n) = A000217(A112652(n+1)-1). - R. J. Mathar, Aug 21 2007
From R. J. Mathar, Nov 18 2009: (Start)
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7).
G.f.: 6*x*(x^2-x+1)*(x^2+4*x+1)/((1+x^2)^2*(1-x)^3) (6*A154293). (End)
From Amiram Eldar, Aug 18 2022: (Start)
a(n) = A000217(A108752(n)).
Sum_{n>=2} 1/a(n) = 2 - (3+4*sqrt(3))*Pi/18. (End)

Extensions

More terms from Sascha Kurz, Apr 01 2002
More terms from R. J. Mathar, Aug 21 2007
Offset corrected to 1, Joerg Arndt, Aug 18 2022

A072833 Numbers that are congruent to 0, 5, 8, 9 mod 12.

Original entry on oeis.org

0, 5, 8, 9, 12, 17, 20, 21, 24, 29, 32, 33, 36, 41, 44, 45, 48, 53, 56, 57, 60, 65, 68, 69, 72, 77, 80, 81, 84, 89, 92, 93, 96, 101, 104, 105, 108, 113, 116, 117, 120, 125, 128, 129, 132, 137, 140, 141, 144, 149, 152, 153, 156, 161, 164, 165, 168, 173, 176, 177, 180, 185, 188, 189
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2002

Keywords

Comments

The exponents occurring in the expansion of F_6(q^2) (see Ahlgren) or, equivalently, the norms of the vectors in the A*5 lattice. - _Andrey Zabolotskiy, Oct 26 2024

Crossrefs

Programs

  • Mathematica
    f[x_, y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; F[6, q_]:= ( -3*f[q, q]^5 + 5*f[q, q]^3*f[q^3, q^3]^2 + 15*f[q, q]*f[q^3, q^3]^4 + 15*f[q^3, q^3]^6/f[q, q]  )/32; cfs = CoefficientList[Series[F[6, q], {q, 0, 500}], q]; Take[Pick[Range[Length[cfs]] - 1, Sign[Abs[cfs]], 1], 50] (* G. C. Greubel, Apr 16 2018 *)
    Flatten[#+{0,5,8,9}&/@(12*Range[0,20])] (* Harvey P. Dale, Apr 10 2022 *)

Formula

G.f.: x*(3*x^2-2*x+5) / ((x-1)^2*(x^2+1)). - Colin Barker, Jul 31 2013
Sum_{n>=1} 1/a(n) = Pi*(3-2*sqrt(3))/72 + log(2)/2 - arccoth(sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Jul 26 2024
E.g.f.: exp(x)*(1 + 3*x) - cos(x) + sin(x). - Stefano Spezia, Oct 27 2024

Extensions

Terms a(33) onward added by G. C. Greubel, Apr 16 2018
Edited by Andrey Zabolotskiy, Aug 14 2020

A193828 Even generalized pentagonal numbers.

Original entry on oeis.org

0, 2, 12, 22, 26, 40, 70, 92, 100, 126, 176, 210, 222, 260, 330, 376, 392, 442, 532, 590, 610, 672, 782, 852, 876, 950, 1080, 1162, 1190, 1276, 1426, 1520, 1552, 1650, 1820, 1926, 1962, 2072, 2262, 2380, 2420, 2542, 2752, 2882, 2926, 3060, 3290, 3432, 3480
Offset: 0

Views

Author

Omar E. Pol, Aug 19 2011

Keywords

Comments

Even numbers in A001318.
Exponents in the expansion of Sum_{n >= 0} q^(2*n)/(Product_{k = 1..2*n} 1 + q^(2*k)) = 1 + q^2 - q^12 - q^22 + q^26 + q^40 - - + + ... (follows from Berndt et al., Theorem 3.3). Cf. A067589. - Peter Bala, Jan 21 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2*x*(x^2 - x + 1)*(x^2 + 4*x + 1)/((x - 1)^3*(x^2 + 1)^2), {x, 0, 50}], x] (* G. C. Greubel, Jun 06 2017 *)
    LinearRecurrence[{3,-5,7,-7,5,-3,1},{0,2,12,22,26,40,70},50] (* Harvey P. Dale, Apr 09 2019 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(-2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2))) \\ G. C. Greubel, Jun 06 2017

Formula

a(n) = A000217(A108752(n+1))/3 = 2*A154293(n+1).
G.f.: -2*x*(x^2-x+1)*(x^2+4*x+1)/((x-1)^3*(x^2+1)^2). - Colin Barker, Sep 12 2012
Sum_{n>=1} 1/a(n) = 6 - (1+4/sqrt(3))*Pi/2. - Amiram Eldar, Mar 18 2022

A287765 Period 4: repeat [1, 3, 5, 3].

Original entry on oeis.org

1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1, 3, 5, 3, 1
Offset: 1

Views

Author

Robert G. Wilson v, May 31 2017

Keywords

Crossrefs

Inspired by the first difference of A108752.

Programs

  • Mathematica
    PadRight[{}, 105, {1, 3, 5, 3}]
    CoefficientList[Series[(3 x^2 + 2 x + 1)/(-x^3 + x^2 - x + 1), {x, 0, 104}], x]
    LinearRecurrence[{1, -1, 1}, {1, 3, 5}, 105]
    RecurrenceTable[{a[n] == a[n - 1] - a[n - 2] + a[n - 3], a[1] == 1, a[2] == 3, a[3] == 5}, a, {n, 105}]
    Table[{1, 3, 5, 3}, 10] // Flatten (* Eric W. Weisstein, Feb 07 2025 *)
    Table[3 - 2 Sin[n Pi/2], {n, 20}] (* Eric W. Weisstein, Feb 07 2025 *)
    3 - 2 Sin[Range[20] Pi/2] (* Eric W. Weisstein, Feb 07 2025 *)

Formula

G.f.: x * (3*x^2+2*x+1) / (1-x+x^2-x^3). [Corrected by Georg Fischer, May 19 2019]
a(n) = a(n-1) - a(n-2) + a(n-3) with a(1)=1, a(2)=3 and a(3)=5.
a(2n) = 3, a(4*n+1) = 1 and a(4*n+3) = 5.
a(n) = ((n+3) mod 4) + ((n+4) mod 4). - Aaron J Grech, Aug 30 2024

A108760 Irregular array: n-th row consists of nonnegative integers i less than n such that n divides i(i+1).

Original entry on oeis.org

0, 1, 0, 2, 0, 3, 0, 4, 0, 2, 3, 5, 0, 6, 0, 7, 0, 8, 0, 4, 5, 9, 0, 10, 0, 3, 8, 11, 0, 12, 0, 6, 7, 13, 0, 5, 9, 14, 0, 15, 0, 16, 0, 8, 9, 17, 0, 18, 0, 4, 15, 19, 0, 6, 14, 20, 0, 10, 11, 21, 0, 22, 0, 8, 15, 23, 0, 24, 0, 12, 13, 25, 0, 26, 0, 7, 20, 27, 0, 28, 0, 5, 9, 14, 15, 20, 24, 29
Offset: 2

Views

Author

Robert Phillips (bobp(AT)usca.edu), Jun 24 2005

Keywords

Comments

Row n starts with 0 and ends with n-1.
Row n of this irregular array can be viewed as the first row of an infinite matrix with elements a_{j,i} = T(n,i)+n*j. That matrix consists of all nonnegative integers i such that n divides i(i+1).
I use these matrices to generate subsequences of A012132, as you may see on page 9 of my referenced work.

Examples

			Row 12 is 0,3,8,11 which is the first row of the matrix:
   0  3  8 11
  12 15 20 23
  24 27 32 35
  ...
giving all nonnegative integers i such that 12 divides i(i+1) (cf. A108752).
Array begins:
  0, 1;
  0, 2;
  0, 3;
  0, 4;
  0, 2, 3, 5;
  0, 6;
  0, 7;
  0, 8;
  0, 4, 5, 9;
  ...
		

Crossrefs

Programs

  • Python
    [i for n in range(2, 30) for i in range(0, n) if i*(i+1)%n==0] # Andrey Zabolotskiy, Mar 19 2022

Extensions

Edited by Andrey Zabolotskiy, Mar 19 2022
Showing 1-6 of 6 results.